NCERT Solutions for Class 11 Maths Chapter 3 - Trigonometric Functions

NCERT Solutions for Class 11 Maths Chapter 1 Free PDF Download

Please Click on Free PDF Download link to Download the NCERT Solutions for Class 11 Maths Chapter 1 Sets

    Fields marked with a are mandatory, so please fill them in carefully.
    To download the PDF file, kindly fill out and submit the form below.

    Exercise 3.1

    1. Find the radian measure corresponding to following degree measures:

    (i) 25°

    (ii) – 47° 30′

    (iii) 240°

    (iv) 520°

    $$\textbf{Sol.}\space(\text{i})\space 25\degree=25×\frac{\pi}{180}\text{rad}=\frac{5\pi}{36}\text{radian}\\\bigg(\because 1\degree=\frac{\pi}{180}\text{rad}\bigg)\\\text{(ii)}\space-47\degree30'=-\bigg(47+\frac{30}{60}\bigg)^\degree\\=-\bigg(47+\frac{1}{2}\bigg)^\degree\\\bigg[\because 1'=\bigg(\frac{1}{60}\bigg)^\degree\bigg]\\=-\bigg(\frac{94+1}{2}\bigg)^\degree=-\frac{95\degree}{2}$$

    $$=-\frac{95}{2}×\frac{\pi}{180}\space\text{radian}\\=-\frac{19\pi}{72}\text{radian}$$

    $$\text{(iii)\space} 240\degree=240×\frac{\pi}{180}\text{radian}\\=\frac{4\pi}{3}\text{radian}\\\text{(iv) 520 = 520}×\frac{\pi}{180}\text{radian}\\=\frac{26\pi}{9}\text{radian}$$

    2. Find the degree corresponding to the following radian measure

    $$\bigg(\textbf{use}\space\pi=\frac{\textbf{22}}{\textbf{7}}\bigg).$$

    $$\textbf{(i)}\space\bigg(\frac{\textbf{11}}{\textbf{16}}\bigg)$$

    (ii) – 4

    $$\textbf{(iii)\space}\frac{\textbf{5}\pi}{\textbf{3}}\\\textbf{(iv)}\space\frac{\textbf{7}\pi}{\textbf{6}}$$

    Sol. (i)

    $$\bigg(\frac{11}{16}\bigg)^c=\bigg(\frac{11}{16}×\frac{180}{\pi}\bigg)^\degree\\=\frac{11×180×7}{16×22}\\=\bigg(\frac{11}{8}×\frac{90}{22}×7\bigg)^{\degree}\\=\bigg(\frac{45×7}{8}\bigg)^{\degree}\\\bigg[\because 1^c=\bigg(\frac{180}{\pi}\bigg)^\degree\bigg]\\=\bigg(\frac{315}{8}\bigg)^\degree=39\degree+\bigg(\frac{3}{8}\bigg)^\degree\\=39\degree+\frac{3}{8}×60'$$

    $$=39\degree+\bigg(\frac{45}{2}\bigg)' (\because 1\degree=60')\\=39\degree + 22\frac{1'}{2}\\=39\degree+22'+\frac{1×60''}{2}\\=39\degree+22'+30''$$

    = 39° 22′ 30′′   (∵ 1′ = 60′′)

    $$\text{(ii)\space} -4^c=-\bigg(4×\frac{180}{\pi}\bigg)^\degree\\=-\bigg(4×\frac{180}{22}×7\bigg)\\\bigg[\because 1\degree=\bigg(\frac{180}{\pi}\bigg)^\degree\bigg]\\=-\bigg(\frac{2×1260\degree}{11}\bigg)=-\bigg(\frac{2520}{11}\bigg)^\degree\\=-\bigg[229\degree+\bigg(\frac{1}{11}\bigg)^\degree\bigg]\\=-\bigg(229\degree+\frac{1}{11}×60'\bigg)\space(\because 1\degree=60')$$

    $$=-\bigg(229\degree+\frac{1}{11}×60'\bigg)(\because 1\degree=60')\\=-\bigg(229\degree+5'+\bigg(\frac{5}{11}\bigg) '\bigg)\\=-\bigg(229\degree+5'+\frac{5}{11}×60''\bigg)(\because 1'=60'')$$

    = – (229° 5′ 27′′) (approx)

    $$\text{(iii)\space}\bigg(\frac{5\pi}{3}\bigg)^c=\bigg(\frac{5\pi}{3}×\frac{180}{\pi}\bigg)^\degree\\=300\degree$$

    Hence, 12π radians will be turn in 1 s.

    $$\text{(iv)\space}\bigg(\frac{7\pi}{6}\bigg)^c=\bigg[\frac{7\pi}{6}×\frac{180}{\pi}\bigg]^\degree=210\degree$$

    3. A wheel makes 360 revolutions in 1 min. Through how many radians does it turn in one second.

    Sol. In 1 min, number of revolutions of wheel = 360

    i.e., In 60 s, number of revolutions of wheel = 360

    $$\therefore\space\text{In 1 s, number of revolutions of wheel}=\frac{360}{60}\\=6$$

    In 1 revolutions, angle = 360° = 2π

    In 6 revolutions, angle = 2π × 6 = 12π radians.

    4. Find the degree measure of the angle subtended at the centre of the circle of radius 100 cm by an arc of length 22 cm.

    $$\bigg(\textbf{Use}\space\pi=\frac{\textbf{22}}{\textbf{7}}\bigg)$$

    Sol. Here, length of arc l = 22 cm and radius r = 100 cm

    $$\text{Using the formula}\space\theta=\frac{l}{r},\text{we have}\\\Rarr\space\theta=\frac{22}{100}=\frac{11}{50}\text{radians}\space\\\bigg(\because \theta=\frac{l}{r}\bigg)\\=\bigg(\frac{11}{50}×\frac{180}{\pi}\bigg)^{\degree}\\=\bigg(\frac{11×18×7}{5×22}\bigg)^{\degree}\\=\bigg(\frac{63}{5}\bigg)^\degree\\=12\degree+\bigg(\frac{3}{5}\bigg)^\degree$$

    $$= 12\degree + \frac{3}{5}×60'\space (\because 1\degree = 60')$$

    = 12° 36′

    Hence, the angle formed by arc at the centre is 12°36′.

    5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

    Sol. Given, diameter = 40 cm

    $$\therefore\space \text{Radius CA = AB}=\frac{\text{diameter}}{2}\\=\frac{40}{2}=20\space\text{cm}$$

    Also, chord AB = 20 cm

    Trigonometric Functions_ans5

    Now, we have all the three sides of ΔABC equal so, it is an equilateral triangle.

    $$\Rarr\space Q=\angle\text{ACB}=60\degree\\=60×\frac{\pi}{180}\space\text{rad}\\\text{Now, using the formula}\space\theta=\frac{l}{r}\\ 60×\frac{\pi}{180}=\frac{\text{AB}}{20}\\\Rarr\space\text{AB}=60×20×\frac{\pi}{180\degree}=\frac{20\pi}{2}\text{cm}$$

    Hence, the length of minor arc of the chord is

    $$\frac{20 \pi}{2}\space\text{cm}.$$

    6. If in two circles, arcs of the same length subtend angles of 60° and 75° at the centre, find the ratio of their radii.

    Sol.

    Trigonometric Functions_ans6

    $$\text{Using the formula}\space\theta=\frac{l}{r}\\\text{For first circle,}\space\theta_1=\frac{l}{r_1}\\60×\frac{\pi}{180}=\frac{l}{r_1}\space\text{...(i)}$$

    And for second circle

    $$\theta_2=\frac{l}{r_2}\qquad\\75×\frac{\pi}{180}=\frac{l}{r_2}\space\text{...(ii)}$$

    Dividing equation (i) by equation (ii), we get

    $$\frac{60×\frac{\pi}{180}}{75×\frac{\pi}{180}}=\frac{\frac{l}{r_1}}{\frac{l}{r_2}}\\\Rarr\space \frac{r_2}{r_1}=\frac{4}{5}$$

    ⇒ r1 : r2 = 5 : 4

    Hence, the ratio of their radii is 5 : 4.

    7. Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length:

    (a) 10 c m

    (b) 15 cm

    (c) 21 cm

    Sol. (a) $$\theta=\frac{10}{75}=\frac{2}{15}\space\text{radians}$$

    Trigonometric Functions_ans7(a)

    $$\text{(b)\space}\theta=\frac{15}{75}=\frac{1}{5}\space\text{radians}$$

    $$\text{(c)\space}\theta=\frac{21}{75}=\frac{7}{25}\space\text{radians}$$

    Trigonometric Functions_ans7(c)

    Exercise 3.2

    Find the values of other five trigonometric functions in Exercises 1 to 5:

    $$\textbf{1. cos x =}-\frac{\textbf{1}}{\textbf{2}},\textbf{where x lies in third}\\ \textbf{quadrant.}$$

    $$\textbf{Sol.}\space\text{cos x}=-\frac{1}{2}$$

    Given that x lies in third quadrant.

    $$\text{i.e.}\space \pi\lt x\lt\frac{3\pi}{2}$$

    We have sin2 x + cos2 x = 1

    ⇒ sin2 x = 1 – cos2 x

    $$\Rarr\space\text{sin}^{2}x=1-\bigg(-\frac{1}{2}\bigg)^{2}\\\Rarr\space\text{sin}^{2}x=1-\frac{1}{4}=\frac{3}{4}\\\Rarr\space\text{sin x}=\pm\frac{\sqrt{3}}{2}$$

    ∵ In third quadrant sin x in negative, so we will leave its positive value.

    $$\text{i.e.,\space sin x}=-\frac{\sqrt{3}}{2}\\\text{Now,}\space \text{tan x}=\frac{\text{sin}\space x}{\text{cos}\space x}=\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=\sqrt{3},\\\text{cot x}=\frac{1}{\text{tan x}}=\frac{1}{\sqrt{3}}\\\text{and\space sec x}=\frac{1}{\text{cos} \space x}=-2,\\\text{cosec x}=\frac{1}{ \text{sin} \space x}=-\frac{2}{\sqrt{3}}$$

    $$\textbf{2. sin x}=\frac{\textbf{3}}{\textbf{5}},\textbf{where x lies in}\\\space \textbf{second quadrant.}$$

    $$\textbf{Sol.}\space\text{sin x}=\frac{3}{5}$$

    Given that x lies in second quadrant.

    $$i.e.,\space \frac{\pi}{2}\lt x\lt\pi$$

    $$\because\space \text{sin}^{2}x+\text{cos}^{2}x=1\\\Rarr\space \text{cos}^{2}x=1-\text{sin}^{2}x\\1-\bigg(\frac{3}{5}\bigg)^{2}=1-\frac{9}{25}\\=\frac{25-9}{25}=\frac{16}{25}\\\Rarr\space\text{cos x}=\pm\frac{4}{5}$$

    ∵ In second quadrant, cos x is negative, so we will leaves its positive value.

    $$\text{i.e.\space}\text{cos x}=-\frac{4}{5}\\\Rarr\space\text{tan x}=\frac{\text{sin x}}{\text{cos} x}=\frac{\frac{3}{5}}{-\frac{4}{5}}=-\frac{3}{4},\\\text{cot x =}\frac{1}{\text{tan x}}=-\frac{4}{\text{3}}, \\\text{sec x =}\frac{1}{\text{cos x}}=-\frac{5}{4}\\\text{and\space cosec x =}\frac{1}{\text{sin x}}=\frac{5}{3}$$

    $$\textbf{3. cot x}=\frac{\textbf{3}}{\textbf{4}}, \textbf{where x lies in third quadrant.}$$

    $$\textbf{Sol.}\space \text{cot x}=\frac{3}{4}$$

    Given that x lies in third quadrant.

    $$\text{i.e.,}\space \pi\lt x\lt\frac{3\pi}{2}\\\Rarr\space\text{tan x}=\frac{1}{\text{cot x}}=\frac{4}{3}\\\because\space \text{sec}^{2}x=\text{tan}^{2}x+1=\frac{16}{9}+1\\\text{sec}^{2}x=\frac{25}{9}\\\Rarr\space \text{sec x}=\pm\frac{5}{3}$$

    ∵ x lies in third quadrant, so we take only its negative value.

    $$\text{i.e.,}\space\text{sec x = −}\frac{5}{3}\\\Rarr\space\text{cos x = −}\frac{3}{5}\\\because\space\text{tan x}=\frac{\text{sin x}}{\text{cos x}}\\\Rarr\space\frac{4}{3}=\frac{\text{sin x}}{-\frac{3}{5}}\\\Rarr\space \text{sin x}=-\frac{4}{5}\\\text{and cosec x}=-\frac{5}{4}.$$

    $$\textbf{4. sec x}=\frac{\textbf{13}}{\textbf{5}},\textbf{where x lies in }\\\textbf{fourth quadrant.}\\\textbf{Sol.}\space\text{sec x}=\frac{13}{5}$$

    Given that x lies in fourth quadrant.

    $$\text{i.e.}\space\frac{3\pi}{2}\lt x\lt2\pi\\\Rarr\space\text{cos x}=\frac{5}{13}$$

    ∵ sin2 x + cos2 x = 1

    $$\Rarr\space \text{sin}^{2}x=1-\text{cos}^{2}x=1-\bigg(\frac{5}{13}\bigg)^{2}\\=1-\frac{25}{169}=\frac{169-25}{169}\\=\frac{144}{169}=\bigg(\frac{12}{13}\bigg)^{2}\\\Rarr\space\text{sinx}=\pm\frac{12}{13}$$

    Since, x lies in fourth quadrant, so cos x and sec x will be positive other function will take negative sign.

    $$\text{i.e.,\space}\text{sin x}=-\frac{12}{13}\\\text{tan x}=\frac{\text{sin x}}{\text{cos x}}=\frac{-\bigg(\frac{12}{13}\bigg)}{\bigg(\frac{5}{13}\bigg)}=-\frac{12}{5}\\\Rarr\space\text{cosec x}=\frac{1}{\text{sin x}}=\frac{-13}{12},\\\text{cot x}=\frac{1}{\text{tan x}}=-\frac{5}{12}$$

    $$\textbf{5. tan x}=-\frac{\textbf{5}}{\textbf{12}}, \textbf{where x lies in}\\\textbf{ second quadrant.}\\\textbf{Sol.}\space\text{tan x =}-\frac{5}{12}$$

    Given that x lies in second quadrant, so, sin x, cosec x will be psotive. Other functions will take negative sign 

    $$\text{i.e.,}\space \frac{\pi}{2}\lt x \lt\pi\\\text{cot x}=\frac{1}{\text{tan x}}=-\frac{12}{5}\\\text{Now, \space}\text{sec}^{2}x=1+\text{tan}^{2}x=1+\bigg(-\frac{5}{12}\bigg)^{2}\\=1+\frac{25}{44}=\frac{169}{144}\\\text{sec}^{2}x=\bigg(\frac{13}{12}\bigg)^{2}\\\Rarr\space\text{sec x}=\pm\frac{13}{12}$$

    ∵ x lies in second quadrant, so we take negative sign.

    $$\therefore\space\text{sec x}=-\frac{13}{12}\\\Rarr\space\text{cos x}=\frac{1}{\text{sec x}}=\frac{-12}{13}\\\text{Now,}\space\text{tan x}=\frac{\text{sin x}}{\text{cos x}}\\\Rarr\space -\frac{5}{12}=\frac{\text{sin x}}{-\frac{12}{13}}\\\Rarr\space \text{sin x}=\frac{5}{13}\\\text{and cosec x}=\frac{1}{\text{sin x}}=\frac{13}{5}.$$

    Find the values of trigonometric functions in Exercises 6 to 10.

    6. sin 765°.

    $$\textbf{Sol.}\space\text{sin 765\degree}=\text{sin}(360×2+45)\degree\\=\text{sin 45\degree}=\frac{1}{\sqrt{2}}\\\lbrack\because \text{sin (2}n\pi + \theta) = sin \theta\rbrack$$

    7. cosec (– 1410°).

    Sol. cosec (– 1410°) = – cosec (1410°)

    [∵ cosec (– θ) = – cosec θ]

    = – cosec (360 × 4 – 30)°

    = – (– cosec 30°) = cosec 30° = 2

    [∵ cosec (2nπ – θ) = – cosec θ]

    $$\textbf{8. tan}\space\frac{\textbf{19}\pi}{\textbf{3}}.$$

    $$\textbf{Sol.}\space\text{tan}\frac{19\pi}{3}=\text{tan}\bigg(6\pi+\frac{\pi}{3}\bigg)\\=\text{tan}\bigg(2\pi×3+\frac{\pi}{3}\bigg)\\=\text{tan}\frac{\pi}{3}=\sqrt{3}\\\lbrack\therefore\space\text{tan(2n}\pi+\theta)=\text{tan}\space\theta\rbrack$$

    $$\textbf{9. sin}\bigg(\frac{\normalsize-\textbf{11}\pi}{\textbf{3}}\bigg)\\\textbf{Sol.\space} \text{sin}\bigg(\frac{-11\pi}{3}\bigg)=-\text{sin}\bigg(\frac{11\pi}{3}\bigg)\\\lbrack\because \text{sin}(-\theta)=-\text{sin}\space\theta\rbrack\\=-\text{sin}\bigg(4\pi-\frac{\pi}{3}\bigg)=-\text{sin}\bigg(2\pi×2-\frac{\pi}{3}\bigg)\\=-\bigg(-\text{sin}\frac{\pi}{3}\bigg)=\text{sin}\bigg(\frac{\pi}{3}\bigg)=\frac{\sqrt{3}}{2}\\\lbrack\because \text{sin(2n}\pi-\theta)=-\text{sin}\theta\rbrack$$

    $$\textbf{10. cot}\bigg(\frac{\normalsize-\textbf{15}\pi}{\textbf{4}}\bigg)\\\textbf{Sol.}\space\text{cot}\bigg(-\frac{15\pi}{4}\bigg)=-\text{cot}\bigg(\frac{15\pi}{4}\bigg)\\\lbrack\because \text{cot}(-\theta)=-\text{cot}\space\theta\rbrack\\=-\text{cot}\bigg(4\pi-\frac{\pi}{4}\bigg)\\=-\text{cot}\bigg(2\pi×2-\frac{\pi}{4}\bigg)\\=-\bigg(-\text{cot}\frac{\pi}{4}\bigg)=\text{cot}\frac{\pi}{4}=1$$

    [∵ cot (2nπ – θ) = – cot θ]

    Exercise 3.3

    $$\textbf{1. Prove that: \space sin}^{2}\frac{\pi}{\textbf{6}}+\textbf{cos}^{2}\frac{\pi}{\textbf{3}}-\textbf{tan}^{2}\frac{\pi}{\textbf{4}}=-\frac{\textbf{1}}{\textbf{2}}\\\textbf{Sol.}\space \text{sin}^{2}\frac{\pi}{6}+\text{cos}^{2}\frac{\pi}{3}-\text{tan}^{2}\frac{\pi}{4}=-\frac{1}{2}\\\text{L.H.S.}=\text{sin}^{2}\frac{\pi}{6}+\text{cos}^{2}\frac{\pi}{3}-\text{tan}^{2}\frac{\pi}{4}\\=\bigg(\frac{1}{2}\bigg)^{2}+\bigg(\frac{1}{2}\bigg)^{2}-(1)^{2}\\=\frac{1}{4}+\frac{1}{4}-1\\=\frac{1}{2}-1\\=-\frac{1}{2}=\text{R.H.S}$$

    ∴ L.H.S. = R.H.S.

    Hence Proved.

    $$\textbf{2. Prove that:}\space\textbf{2 sin}^{2}\frac{\pi}{\textbf{6}}+\textbf{cosec}^{2}\frac{\textbf{7}\pi}{\textbf{6}}\textbf{cos}^{2}\frac{\pi}{\textbf{3}}=\frac{\textbf{3}}{\textbf{2}}\\\textbf{Sol.\space}2\text{sin}^{2}\frac{\pi}{6}+\text{cosec}^{2}\frac{7\pi}{6}\text{cos}^{2}\frac{\pi}{3}=\frac{3}{2}\\\text{L.H.S.} =2\text{sin}^{2}\frac{\pi}{6}+\text{cosec}^{2}\frac{7\pi}{6}\text{cos}^{2}\frac{\pi}{3}\\=2×\bigg(\frac{1}{2}\bigg)^{2}+\text{cosec}^{2}\bigg(\pi+\frac{\pi}{6}\bigg)\text{cos}^{2}\frac{\pi}{3}\\=2×\frac{1}{4}+\text{cosec}^{2}\frac{\pi}{6}\text{cos}^{2}\frac{\pi}{3}\\\lbrack\because\space \text{cosec}(\pi+\theta)=-\text{cosec}\space\theta\rbrack\\=\frac{1}{2}+(2)^{2}×\bigg(\frac{1}{2}\bigg)^{2}=\frac{1}{2}+1=\frac{3}{2}=\text{R.H.S.}$$

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{3. Prove that: cot}^{2}\frac{\pi}{\textbf{6}}+\textbf{cosec}\frac{\textbf{5}\pi}{\textbf{6}}\\+\textbf{3 tan}^{2}\frac{\pi}{\textbf{6}}=\textbf{6}\\\textbf{Sol.}\space \text{cot}^{2}\frac{\pi}{6}+\text{cosec}\frac{5\pi}{6}+3\text{tan}^{2}\frac{\pi}{6}=6\\\text{L.H.S = }\text{cot}^{2}\frac{\pi}{6}+\text{cosec}\frac{5\pi}{6}+3\text{tan}^{2}\frac{\pi}{6}\\=(\sqrt{3})^{2}+\text{cosec}\bigg(\pi-\frac{\pi}{6}\bigg)+3\bigg(\frac{1}{\sqrt{3}}\bigg)^{2}\\=3+\text{cosec}\frac{\pi}{6}+3×\frac{1}{3}$$

    [∵ cosec (π – θ) = cosec θ]

    = 3 + 2 + 1 = 6 = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{4. Prove that: 2 sin}^{2}\space\frac{\textbf{3}\pi}{\textbf{4}}+2\textbf{cos}^{2}\frac{\pi}{\textbf{4}}+\\2\textbf{sec}^{2}\frac{\pi}{\textbf{3}}\textbf{=10}\\\textbf{Sol.\space}2\space\text{sin}^{2}\frac{3\pi}{4}+2\text{cos}^{2}\frac{\pi}{4}+2\space\text{sec}^{2}\frac{\pi}{3}=10\\\text{L.H.S}=2\space\text{sin}^{2}\frac{3\pi}{4}+2\text{cos}^{2}\frac{\pi}{4}+2\text{sec}^{2}\frac{\pi}{3}\\=2\space\text{sin}^{2}\frac{\pi}{4}+2×\bigg(\frac{1}{\sqrt{2}}\bigg)^{2}+2(2)^{2}$$

    [∵ sin (π – θ) = sin θ]

    $$= 2×\bigg(\frac{1}{\sqrt{2}}\bigg)^{2}+2×\frac{1}{2}×4\\=2×\frac{1}{2}+1+8$$

    = 1 + 1 + 8 = 10 = R.H.S.

    L.H.S. = R.H.S. Hence Proved.

    5. Find the value of (i) sin 75°, (ii) tan 15°.

    Sol. (i) sin 75° = sin (45° + 30°)

    [∵ sin (A + B) = sin A cos B + cos A sin B]

    = sin 45° cos 30° + cos 45° sin 30°

    $$=\frac{1}{\sqrt{2}}×\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}×\frac{1}{2}=\frac{\sqrt{3}+1}{2\sqrt{2}}\\=\frac{\sqrt{2}(\sqrt{3}+1)}{4}$$

    (ii) tan 15° = tan (45° – 30°)

    $$\bigg(\because\space\text{tan}(A-B)=\frac{\text{tan A - tan B}}{1 + \text{tan A tan B}}\bigg)\\=\frac{\text{tan}\space45-\text{tan}\space30\degree}{1+\text{tan 45\degree tan 30\degree}}=\frac{1-\frac{1}{\sqrt{3}}}{1+1×\frac{1}{\sqrt{3}}}\\=\frac{\sqrt{3}-1}{\sqrt{3}+1}\\=\frac{\sqrt{3}-1}{\sqrt{3}+1}×\frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{(\sqrt{3}-1)^{2}}{3-1}\\=\frac{3+1-2\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{2}\\=\frac{2(2-\sqrt{3})}{2}=2-\sqrt{3}$$

    6. Prove that:

    $$\textbf{cos}\bigg(\frac{\pi}{\textbf{4}}-x\bigg)\textbf{cos}\bigg(\frac{\pi}{\textbf{4}}-\textbf{y}\bigg)-\\\textbf{sin}\bigg(\frac{\pi}{\textbf{4}}-\textbf{x}\bigg)\textbf{sin}\bigg(\frac{\pi}{\textbf{4}}-\textbf{y}\bigg)\\\textbf{= sin (x + y)}$$

    Sol.

    $$\text{cos}\bigg(\frac{\pi}{4}-x\bigg)\text{cos}\bigg(\frac{\pi}{4}-y\bigg)-\\\text{sin}\bigg(\frac{\pi}{4}-x\bigg)\text{sin}\bigg(\frac{\pi}{4}-y\bigg)\\=\text{sin}(x+y)\\\because\space\text{L.H.S. = cos}\bigg(\frac{\pi}{4}-x\bigg)\text{cos}\bigg(\frac{\pi}{4}-y\bigg)\\-\space\text{sin}\bigg(\frac{\pi}{4}-x\bigg)\text{sin}\bigg(\frac{\pi}{4}-y\bigg)\\\text{Let}\space\frac{\pi}{4}-x=\text{A}\space\text{and}\space\frac{\pi}{4}-y=\text{B}$$

    Then, L.H.S. = cos A cos B – sin A cos B

    = cos (A + B)

    $$=\text{cos}\bigg(\frac{\pi}{4}-x + \frac{\pi}{4}-y\bigg)\\=\text{cos}\bigg(\frac{\pi}{2}-x-y\bigg)=\text{cos}\bigg[\frac{\pi}{2}-(x+y)\bigg]$$

    = sin (x + y) = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{7. Prove that:}\frac{\textbf{tan}\bigg(\frac{\pi}{\textbf{4}}+\textbf{x}\bigg)}{\textbf{tan}\bigg(\frac{\pi}{\textbf{4}}-\textbf{x}\bigg)}\\=\bigg(\frac{\textbf{1}+\textbf{tan}\space \textbf{x}}{\textbf{1}- \textbf{tan} \space \textbf{x}}\bigg)^{2}$$

    $$\textbf{Sol.}\space\frac{\text{tan}\bigg(\frac{\pi}{4}+x\bigg)}{\text{tan}\bigg(\frac{\pi}{4}-x\bigg)}=\bigg(\frac{1+\text{tan x}}{1-\text{tan x}}\bigg)^{2}\\\text{L.H.S.}=\frac{\text{tan}\bigg(\frac{\pi}{4}+x\bigg)}{\text{tan}\bigg(\frac{\pi}{4}-x\bigg)}\\=\frac{\text{tan}\space\frac{\pi}{4}+\text{tan x}}{1-\text{tan}\frac{\pi}{4}\space\text{tan x}}×\frac{1+\text{tan}\frac{\pi}{4}\text{tan x}}{\text{tan}\frac{\pi}{4}-\text{tan x}}\\\bigg(\because \text{tan(A+B)}=\frac{\text{tan A}+\text{tan B}}{1-\text{tan A}\text{tan B}}\text{and}\\\text{tan(A-B)}=\frac{\text{tan A - tan B}}{1 + \text{tan A tan A}}\bigg)$$

    $$=\frac{1+\text{tan x}}{1-\text{tan x}}×\frac{1+\text{tan x}}{1-\text{tan x}}\\=\bigg(\frac{1+\text{tan x}}{1 - \text{tan x}}\bigg)^{2}=\text{R.H.S}$$

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{8. Prove that:}\space\frac{\textbf{cos}(\pi+\textbf{x})\textbf{cos}(-\textbf{x})}{\textbf{sin}(\pi-\textbf{x})\textbf{cos}\bigg(\frac{\pi}{2}+\textbf{x}\bigg)}\\=\textbf{cot}^{2}x.\\\textbf{Sol.}\space\frac{\text{cos}(\pi+x)\text{cos}(-x)}{\text{sin}(\pi-x)\text{cos}\bigg(\frac{\pi}{2}+x\bigg)}=\text{cot}^{2}x\\\text{L.H.S}=\frac{\text{cos}(\pi+x)\text{cos}(-x)}{\text{sin}(\pi-x)\text{cos}\bigg(\frac{\pi}{2}+x\bigg)}\\=\frac{(-\text{cos x})(\text{cos x})}{(\text{sin x})(\text{-sin x})}$$

    $$\begin{pmatrix}\because\space\text{cos}(\pi+\theta)=-\text{cos}\space\theta\\\text{cos}(-\theta)=\text{cos}\space\theta\\\text{sin}(\pi-\theta)=\text{sin}\space\theta\\\text{cos}(\frac{\pi}{2}+\theta)=-\text{sin}\space\theta\end{pmatrix}\\=\frac{\text{cos}^{2}x}{\text{sin}^{2}x}=\text{cot}^{2}x=\text{R.H.S}$$

    ∴ L.H.S. = R.H.S. Hence Proved.

    9. Prove that:

    $$\textbf{cos}\bigg(\frac{\textbf{3}\pi}{\textbf{2}}+\textbf{x}\bigg)\textbf{cos}(\textbf{2}\pi+\textbf{x})\\\bigg[\textbf{cot}\bigg(\frac{\textbf{3}\pi}{\textbf{2}}-\textbf{x}\bigg)+\textbf{cot}(\textbf{2}\pi+\textbf{x})\bigg]=\textbf{1}$$

    $$\textbf{Sol.}\space\text{L.H.S.}=\text{cos}\bigg(\frac{3\pi}{2}+x\bigg)\text{cos}(2\pi+x)\\\bigg[\text{cot}\bigg(\frac{3\pi}{2}-x\bigg)+ \text{cot}(2\pi+x)\bigg]=1$$

    = (sin x) (cos x) [tan x + cot x]

    $$=\text{sin x cos x}\bigg[\frac{\text{sin x}}{\text{cos x}}+\frac{\text{cos x}}{\text{sin x}}\bigg]\\\begin{bmatrix}\because\space \text{cot}\bigg(\frac{3\pi}{2}-\theta\bigg)=\text{tan}\space\theta\\\text{cos}\bigg(\frac{3\pi}{2}+\theta\bigg)=\text{sin}\space\theta\end{bmatrix}\\=\text{sin x cos x}\bigg[\frac{\text{sin}^{2}x+\text{cos}^{2}x}{\text{cos x sin x}}\bigg]$$

    = 1 = R.H.S.

    L.H.S. = R.H.S. Hence Proved.

    10. Prove that:

    sin (n + 1) x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.

    Sol. sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

    L.H.S. = sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n+ 2)x

    = cos [(n + 2)x – (n + 1)x

    [By the formula cos (A – B) = cos A cos B + sin A cos B]

    = cos (nx + 2x – nx – x)

    = cos x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    11. Prove that:

    $$\textbf{cos}\bigg(\frac{\textbf{3}\pi}{\textbf{4}}+\textbf{x}\bigg)-\textbf{cos}\bigg(\frac{\textbf{3}\pi}{\textbf{4}}-\textbf{x}\bigg)=-\sqrt{\textbf{2}}\space\textbf{sin x}.$$

    Sol. 

    $$\text{cos}\bigg(\frac{3\pi}{4}+x\bigg)-\text{cos}\bigg(\frac{3\pi}{4}-x\bigg)=-\sqrt{2}\space\text{sin x}\\\text{L.H.S}=\text{cos}\bigg(\frac{3\pi}{4}+x\bigg)-\text{cos}\bigg(\frac{3\pi}{4}-x\bigg)\\=-\text{2 sin}\frac{\frac{3\pi}{4}+x+\frac{3\pi}{4}-x}{2}\text{sin}\frac{\frac{3\pi}{4}+x-\frac{3\pi}{4}+x}{2}\\\begin{bmatrix}\because\space\text{cos A - cos B}\\=-2\space\text{sin}\bigg(\frac{\text{A+B}}{2}\bigg)\text{sin}\bigg(\frac{\text{A-B}}{2}\bigg) \end{bmatrix}\\=-2\space\text{sin}\frac{3\pi}{4}\text{sin x}\\=-2\space\text{sin }\bigg(\pi-\frac{\pi}{4}\bigg)\text{sin x}\\=-\text{2 sin}\space\frac{\pi}{4}\text{sin x}=-2×\frac{1}{\sqrt{2}}\space\text{sin x}$$

    $$=-\sqrt{2}\space\text{sin x}=\text{R.H.S}$$

    ∴ L.H.S. = R.H.S. Hence Proved.

    12. Prove that: sin2 6x – sin2 4x = sin 2x sin 10x.

    Sol. sin2 6x – sin2 4x = sin 2x sin 10x

    L.H.S. = sin2 6x – sin2 4x

    = sin (6x + 4x) sin (6x – 4x)

    = sin 10x sin 2x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    13. Prove that: cos2 2x – cos2 6x = sin 4x sin 8x.

    Sol. cos2 2x – cos2 6x = sin 4x sin 8x

    ∵ L.H.S. = cos2 2x – cos2 6x

    = (1 – sin2 2x) – (1 – sin2 6x)

    (∵ sin2 A + cos2 A = 1)

    = sin2 6x – sin2 2x

    = sin (6x + 2x) sin (6x – 2x)

    [∵ sin2 A – sin2 B = sin (A + B) sin (A – B)]

    = sin 8x sin 4x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    14. Prove that:

    sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x.

    Sol. sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x

    L.H.S. = sin 2x + 2 sin 4x + sin 6x

    = sin 6x + sin 2x + 2 sin 4x

    $$= 2\space\text{sin}\frac{6x+2x}{2}\text{cos}\frac{6x-2x}{2}+2\text{sin} 4x\\ \begin{bmatrix}\because\space\text{sin A + sin B}\\=2\space \text{sin}\bigg(\frac{\text{A+B}}{2}\bigg)\text{cos}\bigg(\frac{\text{A-B}}{2}\bigg)\end{bmatrix}$$

    = 2 sin 4x cos 2x + 2 sin 4x

    = 2 sin 4x (cos 2x + 1)

    = 2 sin 4x (2 cos2 x – 1 + 1)

    = 2 sin 4x 2 cos2 x

    = 4 cos2 x sin 4x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    15. Prove that:

    cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x).

    Sol. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x).

    L.H.S. = cot 4x (sin 5x + sin 3x)

    $$= \text{cot 4x.2sin}\space\frac{5x+3x}{2}\space\text{cos}\frac{5x-3x}{2}\\\bigg[\because \text{sin} C + \text{sin} D =2 \text{sin}\frac{\text{C+D}}{2}\text{cos}\frac{\text{C-D}}{2} \bigg]\\=\frac{\text{cos 4x}}{\text{sin} 4x}×2 \text{sin 4x cos x}$$

    = 2 cos 4x cos x

    R.H.S. = cot x (sin 5x – sin 3x)

    $$=\text{cot x}\space.\space2\space\text{cos}\frac{5x+3x}{2}\text{sin}\frac{5x+3x}{2}\\\bigg[\because \text{sin C - sin D = 2 cos}\frac{\text{C+D}}{2}\text{sin}\frac{\text{C-D}}{2}\bigg]\\=\frac{\text{cos x}}{\text{sin x}}×\text{2 cos 4x sin x}$$

    = 2 cos 4x cos x

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{16. Prove that:}\space\frac{\textbf{cos 9x- cos 5x}}{\textbf{sin 17x - sin 3x} }\\=-\frac{\textbf{sin 2x}}{\textbf{cos 10x}}\\\qquad\textbf{Sol.}\space\frac{\text{cos 9x - cos 5x}}{\text{sin 17 x - sin 3x}}=-\frac{\text{sin 2x}}{\text{cos 10x}}\\\text{L.H.S.}=\frac{\text{cos}\space 9x- \text{cos}\space5x}{\text{sin 17x - sin 3x}}\\=\frac{-2\space\text{sin}\frac{9x+5x}{2}\text{sin}\frac{9x-5x}{2}}{2 \space\text{cos}\frac{17x+3x}{2} \text{sin}\frac{17x-3x}{2}}\\ \begin{bmatrix}\because \text{cos A - cos B }\\=-2\text{sin}\frac{A+B}{2}\text{sin}\frac{\text{A-B}}{2}\\\text{sin A- sin B}\\=\text{2 cos}\frac{A+B}{2}\text{sin}\frac{A-B}{2}\end{bmatrix}$$

    $$=\frac{\text{-sin 7x}\space\text{sin 2x}}{\text{cos 10 x sin 7x}}=-\frac{\text{sin}\space2x}{\text{cos}\space10 x}$$

    = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{17. Prove that:}\space\frac{\textbf{sin 5x+ sin 3x}}{\textbf{cos 5x + cos 3x}}=\textbf{tan 4x.}$$

    $$\textbf{Sol.}\space\frac{\text{sin 5x + sin 3x}}{\text{cos 5x + cos 3x}}=\text{tan 4x}\\\text{L.H.S}=\frac{\text{sin 5x + sin 3x}}{\text{cos 5x + cos 3x}}\\=\frac{2\space\text{sin} \frac{5x+3x}{2}\text{cos}\frac{5x-3x}{2}}{2 \text{cos}\frac{5x+3x}{2}\text{cos}\frac{5x-3x}{2}}\\\begin{bmatrix}∵ \space \text{cos A+cos B}\\ 2\space\text{cos}\frac{\text{A+B}}{2}\text{cos}\frac{\text{A-B}}{2}\\\text{and \space sin A + sin B}\\=2\text{sin}\frac{\text{A+B}}{2}\text{cos}\frac{\text{A-B}}{2}\end{bmatrix}\\=\frac{\text{sin 4x cos x}}{\text{cos 4x cos x}}$$

    = tan 4x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{18. Prove that:}\space\frac{\textbf{sin x- sin y}}{\textbf{cos x + cos y}}\\=\textbf{tan}\frac{\textbf{x-y}}{\textbf{2}}$$

    $$\textbf{Sol.}\space\frac{\text{sin x- sin y}}{\text{cos x- cos y}}=\text{tan}\frac{x-y}{2}\\\text{L.H.S}=\frac{\text{sin x - siny}}{\text{cos x + cos y}}\\=\frac{\text{2 cos}\frac{x+y}{2}\text{sin}\frac{x-y}{2}}{2\text{cos}\frac{x+y}{2}\text{cos}\frac{x-y}{2}}\\\begin{bmatrix}\because\space \text{cos A + cos B}\\2 \text{cos}\frac{A+B}{2}\text{cos}\frac{A-B}{2}\\\text{and}\space \text{sinA}-\text{sinB}\\ = 2 \text{cos}\frac{\text{A+B}}{2}\text{sin}\frac{\text{A-B}}{2}\end{bmatrix}\\=\text{tan}\frac{x-y}{2} =\text{R.H.S.}$$

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{19. Prove that:}\space\frac{\textbf{sin x + sin 3x}}{\textbf{cos x + cos 3x}}\\=\textbf{tan 2x.}\\\textbf{Sol.}\space\frac{\text{sin x + sin 3x}}{\text{cos x + cos 3x}}\\=\frac{\text{sin 3x + sin x}}{\text{cos 3x + cos x}}\\=\frac{2\space\text{sin}\frac{3x+x}{2}\text{cos}\frac{3x-x}{2}}{2\space\text{cos}\frac{3x+x}{2}\text{cos}\frac{3x-x}{2}}\\$$

    $$\begin{bmatrix}\because\space \text{cos A + cos B = 2 cos}\frac{\text{A+B}}{2}\text{cos}\frac{\text{A-B}}{2}\\\text{and}\space\text{sin A + sin B = 2 sin}\frac{\text{A+B}}{2}\text{cos}\frac{\text{A-B}}{2}\end{bmatrix}\\=\frac{\text{sin 2x cos x}}{\text{cos 2x cosx}}=\text{tan 2x = R.H.S}$$

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{20. Prove that:}\frac{\textbf{sin x - sin 3x}}{\textbf{sin}^{2}\textbf{x}-\textbf{cos}^{2}\textbf{x}}=2\textbf{sin x}\\\textbf{Sol.\space}\frac{\text{sin x- sin 3x}}{\text{sin}^{2}\text{x}-\text{cos}^{2}\text{x}}=\text{2 sin x}\\\text{L.H.S}=\frac{\text{sin x- sin 3x}}{\text{sin}^{2}x- \text{cos}^{2}x}\\=\frac{\text{sin 3x - sin x}}{\text{cos}^{2}x-\text{sin}^{2}x}\\=\frac{2\space\text{cos}\frac{3x+x}{2}\text{sin}\frac{3x-x}{2}}{\text{cos 2x}}\\\begin{bmatrix}\because \text{sin A - sin B = 2\text{cos}}\frac{\text{A+B}}{2}\text{sin}\frac{\text{A-B}}{2}\\\text{cos}^{2}x-\text{sin}^{2}x=\text{cos 2x}\end{bmatrix}\\=\frac{\text{2 cos 2x sin x}}{\text{cos 2x}}=\text{2 sin x= R.H.S}$$

    ∴ L.H.S. = R.H.S.

    $$\textbf{21. Prove that:}\space\frac{\textbf{cos 4x} + \textbf{cos 3x} + \textbf{cos 2x}}{\textbf{sin 4x} + \textbf{sin 3x} + \textbf{sin 2x}}=\\\textbf{cot 3x}\\\textbf{Sol.}\space\frac{\text{cos 4x + cos 3x + cos 2x}}{\text{sin 4x + sin 3x + sin 2x}}\\=\text{cot 3x}\\\text{L.H.S}=\frac{\text{cos 4x + cos 3x + cos 2x}}{\text{sin 4x + sin 3x + sin 2x}}\\=\frac{\text{(cos 4x + cos 2x) +}\space\text{cos 3x}}{\text{(sin 4x + sin 2x) + sin 3x}}\\=\frac{\text{2 cos}\frac{4x+2x}{2}\text{cos}\frac{4x-2x}{2} + \text{cos 3x} }{\text{ 2 sin}\frac{4x+2x}{2}\text{cos}\frac{4x-2x}{2} + \text{sin 3x}}\\\begin{bmatrix}\because \text{cos A + cos B = 2 cos}\frac{\text{A+B}}{2}\text{cos}\frac{\text{A-B}}{2}\\\because\text{sin A + sin B = 2 sin}\frac{\text{A+B}}{2}\text{cos}\frac{\text{A-B}}{2}\end{bmatrix}\\=\frac{\text{2 cos 3x cos x + cos 3x}}{\text{2 sin 3x cos x + sin 3x}}$$

    = cot 3x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    22. Prove that:

    cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1.

    Sol. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1

    Now, cot 3x = cot (2x + x)

    $$\frac{\text{cot 3x}}{1}=\frac{\text{cot 2x cot x - 1}}{\text{cot 2x + cot x}}\\\bigg[\because\space\text{cot(A+B)}=\frac{\text{cot A cot B - 1}}{\text{cot B + cot A}}\bigg]$$

    ⇒ cot 3x cot 2x + cot 3x cot x = cot 2x cot x – 1

    ⇒ cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1.

    Hence Proved.

    $$\textbf{23. Prove that: 4x}=\frac{\textbf{4 tan x}(1 - \textbf{tan}^{2}\textbf{x})}{\textbf{1-6 tan}^{2}x + \textbf{tan}^{4}\textbf{x}}\\\textbf{Sol.}\space\text{tan 4x}=\frac{\text{4 tan x(1- tan}^{2}\text{x})}{1-6\text{tan}^{2}x + \text{tan}^{4}\textbf{x}}$$

    L.H.S. = tan 4x = tan 2(2x)

    $$=\frac{\text{2 tan 2x}}{1- \text{tan}^{2}\space 2x}=\frac{2\frac{\text{2 tan x}}{\text{1- tan}^{2}x}}{1-\bigg(\frac{\text{2 tan x}}{\text{1- tan}^{2}x}\bigg)^{2}}\\\begin{bmatrix}\because\space\text{tan 2A}=\frac{\text{2 tan A}}{1- \text{tan}^{2}\textbf{A}}\end{bmatrix}\\=\frac{\text{4 tan x}}{\text{1- tan}^{2}x}×\frac{(1- \text{tan}^{2}x)^{2}}{(1-\text{tan}^{2}x)^{2}-4\text{tan}^{2}x}\\=\frac{\text{4 tan x(1- tan})^{2}x}{1+\text{tan}^{4}x-2\text{tan}^{2}x-4\text{tan}^{2}x}\\=\frac{4 \text{tan} x(1- \text{tan}^{2}x)}{1-6 \text{tan}^{2}x + \text{tan}^{4}x}=\text{R.H.S}$$

    ∴ L.H.S. = R.H.S.

    24. Prove that: cos 4x = 1 – 8 sin2 x cos2 x.

    Sol. cos 4x = 1 – 8 sin2 x cos2 x

    L.H.S. = cos 4x = 1 – 2 sin2 2x

    = 1 – 2 (sin 2x)2

    [∵ cos 2x = 1 – 2 sin2 x]

    = 1 – 2(2 sin x cos x)2

    = 1 – 8 sin2 x cos2 x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    25. Prove that:

    cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2x – 1.

    Sol. cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1

    L.H.S. = cos 6x = cos 2(3x) = 2 cos2 3x – 1

    = 2(cos 3x)2 – 1 (∵ cos 2θ = 2 cos2 θ – 1)

    = 2(4 cos3 x – 3 cos x)2 – 1

    (∴ cos 3θ = 4 cos3 θ – 3 cos θ)

    = 2(16 cos6 x + 9 cos2 x – 24 cos4 x) – 1

    = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1

    = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    Exercise 3.4

    Find the principal and general solutions of the following equations:

    $$\textbf{1. tan x =}\sqrt{\textbf{3}}\\\textbf{Sol.}\space\text{tan x}=\sqrt{3}\\\text{tan x}=\text{tan}\frac{\pi}{3}\text{or tan}\bigg(\pi + \frac{\pi}{3}\bigg)\\=\text{tan}\frac{\pi}{3}\space\text{or tan}\bigg(\pi + \frac{\pi}{3}\bigg)\\=\text{tan}\frac{\pi}{3}\text{or tan}\frac{4\pi}{3}\\\Rarr\space x=\frac{\pi}{3}\text{or}\frac{4\pi}{3}\\\text{Hence, principal value is x =}\frac{\pi}{3}.$$

    We know that, if tan x = tan α, then

    General solution is x = nπ + α

    $$\therefore\space\text{x = nπ +}\frac{\pi}{3}\space\space\text{where (n ∈ Z)}$$

    2. sec x = 2.

    Sol. sec x = 2

    $$\Rarr\space\text{cos x =}\frac{1}{2}\\\Rarr\space\text{cos x = cos}\frac{\pi}{3}\text{or cos}\bigg(2\pi-\frac{\pi}{3}\bigg)$$

    (∵ cos x is positive in 1st and 4th quadrant)

    $$x=\frac{\pi}{3}\text{or}\frac{5\pi}{3}\\\text{Here, principal value is x =}\frac{\pi}{3},\\\text{we know that, if cos x = cos a, then}\\\text{General solution, x = 2n}\pi ± a\\\therefore\space\text{x = 2n}\pi\pm\frac{\pi}{3}\\\text{where (n ∈ Z)}$$

    3. cotx=- $$\sqrt{3}$$

    $$\textbf{Sol.}\space\text{cot x}=-\sqrt{3}\\\Rarr\space\text{tan x}=-\frac{1}{\sqrt{3}}\\\Rarr\space\text{tan x = -tan}\frac{\pi}{6}\\\Rarr\text{tan x = tan}\bigg(\pi-\frac{\pi}{6}\bigg)\text{or tan}\\\bigg(2\pi-\frac{\pi}{6}\bigg)$$

    [∵ tan x is negative in 2nd and 4th quadrant and tan (π – θ) = – tan θ and tan (2π – θ) = – tan θ]

    $$\text{tan x} = \text{tan}\frac{5\pi}{6}\text{or tan}\frac{11 \pi}{6}\\\Rarr\space x=\frac{5\pi}{6}\text{or}\frac{11\pi}{6}\\\text{Here, principal value is x =}\frac{5\pi}{6}$$

    We know that, if tan x = tan α, then

    General solution, x = nπ + α

    $$x=\text{n}\pi+\frac{5\pi}{6}\space\text{where (n ∈ Z)}$$

    4. cosec x = – 2

    Sol. cosec x = – 2

    $$\Rarr\space\text{sin x}=-\frac{1}{2}\\\Rarr\space\text{sin x}=-\text{sin}\frac{\pi}{6}\\\Rarr\space\text{sin x = sin}\bigg(\pi +\frac{\pi}{6}\bigg)\\\text{or sin }\bigg(2\pi-\frac{\pi}{6}\bigg)$$

    [∵ sin x is negative in 3rd and 4th quadrant, or sin (π + θ) = sin (2π – θ) = – sin θ]

    $$\text{sin x}=\text{sin}\frac{7\pi}{6}\text{or sin}\frac{11 \pi}{6}$$

    Here, principal value is

    $$x=\frac{7\pi}{6}$$

    General solution,

    x = nπ + (– 1)n a

    $$\text{x = n}\pi + (\normalsize-1)^{n}\frac{7\pi}{6}\space\text{where (n ∈ Z)}$$

    Find the general solution for each of the following equations:

    5. cos 4x = cos 2x.

    Sol. Given, cos 4x = cos 2x

    ⇒ cos 4x – cos 2x = 0

    $$\Rarr\space\text{- 2 sin}\frac{4x+2x}{2}\text{sin}\frac{4x-2x}{2}=0\\\bigg[\because\space \text{cos A - cos B =\space-\text{2 sin}}\bigg(\frac{\text{A+B}}{2}\bigg)\text{sin}\bigg(\frac{\text{A-B}}{2}\bigg)\bigg]$$

    ⇒ sin 3x sin x = 0

    ⇒ sin 3x = 0 or sin x = 0

    ⇒ 3x = nπ or x = nπ

    $$\Rarr\space\text{x}=\frac{n\pi}{3}\text{or x=n}\pi$$

    where (n ∈ Z)

    6. cos 3x + cos x – cos 2x = 0.

    Sol. cos 3x + cos x – cos 2x = 0

    $$\Rarr\space\text{2 cos}\frac{3x+x}{2}\text{cos}\frac{3x-x}{2}-\text{cos 2x}= 0\\\begin{bmatrix} \because\space\text{cos C+ cos D }\\\text{= 2 cos}\frac{\text{C+D}}{2}\text{cos}\frac{\text{C-D}}{2}\end{bmatrix}$$

    ⇒ 2 cos 2x cos x – cos 2x = 0

    ⇒ cos 2x (2 cos x – 1) = 0

    ⇒ cos 2x = 0 or 2 cos x – 1 = 0

    $$\Rarr\space\text{2x}=(2n+1)\frac{\pi}{2}\text{or cos x}=\frac{1}{2}\\\Rarr\space\text{x = (2n + 1)}\frac{\pi}{4}\text{or cos x = cos}\frac{\pi}{3}\\\Rarr\space\text{x=(2n+1)}\frac{\pi}{4}\text{or x = 2n}\pi+\frac{\pi}{3}$$

    (n ∈ Z)

    7. sin 2x + cos x = 0.

    Sol. sin 2x + cos x = 0

    ⇒ 2 sin x cos x + cos x = 0

    (∵ sin 2x = 2 sin x cos x)

    ⇒ cos x (2 sin x + 1) = 0

    $$\Rarr\space\text{cos x = 0 or sin x = −}\frac{1}{2}$$

    When cos x = 0

    $$\text{Then,}\space x=(2n+1)\frac{\pi}{2}\\\text{When sin x = −}\frac{1}{2},\\\text{Then, sin x = – sin}\frac{\pi}{6}\\\text{sin x = sin}\bigg(\pi+\frac{\pi}{6}\bigg)$$

    [∵ sin (π + θ) = – sin θ]

    $$\text{sin x = sin}\frac{7\pi}{6}\\\Rarr\space\text{x = n}\pi + (\normalsize-1)^{n}\frac{7\pi}{6}\\\space\text{where (n ∈ Z)} $$

    8. sec2 2x = 1 – tan 2x.

    Sol. sec2 2x = 1 – tan 2x

    1 + tan2 2x = 1 – tan 2x

    (∵ sec2 x = 1 + tan2 x)

    ⇒ tan2 2x + tan 2x = 0

    ⇒ tan 2x (tan 2x + 1) = 0

    ⇒ tan 2x = 0 or tan 2x = – 1

    When tan 2x = 0, then 2x = nπ

    $$\Rarr\space\text{x}=\frac{n\pi}{2}$$

    When tan 2x = – 1

    $$\text{then, tan 2x = – tan}\frac{\pi}{4}\\\text{tan 2x = tan}\bigg(\pi-\frac{\pi}{4}\bigg)\\=\text{tan}\frac{3\pi}{4}$$

    [∴ tan (π – θ) = – tan θ]

    ∴ General solutions

    $$\text{2x = n}\pi + \frac{3\pi}{4}\\\Rarr\space x=\frac{n\pi}{2}+\frac{3\pi}{8}$$

    where n ∈ Z

    9. sin x + sin 3x + sin 5x = 0.

    Sol. sin x + sin 3x + sin 5x = 0

    ⇒ (sin 5x + sin x) + sin 3x = 0

    $$\Rarr\space\text{2 sin}\frac{5x+x}{2}\text{cos}\frac{5x-x}{2}+\text{sin 3x = 0}\\\begin{bmatrix}\because\space\text{sin A + sin B} = \\2\space\text{sin}\bigg(\frac{\text{A+B}}{2}\bigg)\text{cos}\bigg(\frac{\text{A-B}}{2}\bigg)\end{bmatrix}$$

    ⇒ 2 sin 3x cos 2x + sin 3x = 0

    ⇒ sin 3x (2 cos 2x + 1) = 0

    Either sin 3x = 0 or 2 cos 2x + 1 = 0

    When sin 3x = 0,

    Then,  3x = nπ

    $$\Rarr\space\text{x}=\frac{n\pi}{3}$$

    When 2 cos 2x + 1 = 0,

    $$\text{Then,}\space\text{cos 2x}=-\frac{1}{2}\\\Rarr\space\text{cos 2x = cos}\frac{\pi}{3}\\\Rarr\space\text{cos 2x =}\space\text{cos}\bigg(\pi-\frac{\pi}{3}\bigg)$$

    [∵ cos (π – θ) = – cos θ]

    $$\Rarr\space\text{cos 2x = cos}\frac{2\pi}{3}$$

    ∴ General solutions

    $$\text{2x = 2n}\pi + \frac{2\pi}{3}\\\Rarr\space\text{x=n}\pi\pm\frac{\pi}{3}.\space\text{where n ∈ Z}$$

    Miscellaneous Exercise

    $$\textbf{1. 2 cos}\frac{\pi}{\textbf{3}}\textbf{cos}\frac{\textbf{9}\pi}{\textbf{13}} + \textbf{cos}\frac{\textbf{3}\pi}{\textbf{13}} +\textbf{cos}\frac{\textbf{5}\pi}{\textbf{13}}\textbf{=0}$$

    $$\textbf{Sol.}\space\text{2 cos}\frac{\pi}{3}\text{cos}\frac{9\pi}{13} + \text{cos}\frac{3\pi}{13} + \text{cos}\frac{5\pi}{13}=0\\\text{L.H.S.}= \text{2 cos}\frac{\pi}{13}\text{cos}\frac{9\pi}{13} + \text{cos}\frac{3\pi}{13} + \text{cos}\frac{5\pi}{13}\\=\text{cos}\bigg(\frac{9\pi}{13} + \frac{\pi}{13}\bigg) + \text{cos}\bigg(\frac{9\pi}{13}-\frac{\pi}{13}\bigg) + \\\text{cos}\frac{5\pi}{13} + \text{cos}\frac{3\pi}{13}\\\text{(By forumla)}\\=\text{cos}\frac{10\pi}{13} + \text{cos}\frac{8\pi}{13} + \text{cos}\frac{5\pi}{13} + \text{cos}\frac{3\pi}{13}\\=\bigg(\text{cos}\frac{10\pi}{13} + \text{cos}\frac{3\pi}{13}\bigg) + \bigg(\text{cos}\frac{8\pi}{13} + \text{cos}\frac{5\pi}{13}\bigg)$$

    $$=\space\text{2 cos}\frac{\frac{10\pi}{13} +\frac{3\pi}{13} }{2}\text{cos}\frac{\frac{10\pi}{13}-\frac{3\pi}{13}}{2}\\+\space\text{2 cos}\frac{\frac{8\pi}{13} + \frac{5\pi}{13}}{2}\text{cos}\frac{\frac{8\pi}{13}-\frac{5\pi}{13}}{2}$$

    [∵ 2 cos A cos B = cos (A + B) cos (A – B)]

    $$=\text{2 cos}\frac{\pi}{2}\text{cos}\frac{7\pi}{26} + \text{2 cos}\frac{\pi}{2}\text{cos}\frac{3\pi}{26}$$

    = 0 + 0 = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    2. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0.

    Sol. ∵ L.H.S. = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x

    $$=\text{2 sin}\frac{3x+x}{2}\text{cos}\frac{3x-x}{2}\text{sin x}\\-\text{2 sin}\frac{3x+x}{2}\text{sin}\frac{3x-x}{2}\text{cos x}\\\begin{bmatrix}\because\space \text{sinn A + sin B}= \\2\space\text{sin}\frac{\text{A+B}}{2}\text{sin}\frac{\text{A-B}}{2}\end{bmatrix}$$

    $$=\text{2 sin}\frac{3x+x}{2}\text{cos}\frac{3x-x}{2}\text{sin x}\\-\text{2 sin}\frac{3x+x}{2}\text{sin}\frac{3x-x}{2}\text{cos x}\\\begin{bmatrix}\because\space \text{sinn A + sin B}= \\2\space\text{sin}\frac{\text{A+B}}{2}\text{cos}\frac{\text{A-B}}{2}\\\text{and}\space\text{cos A - cos B}\\-\text{2 sin}\frac{\text{A+B}}{2}\text{sin}\frac{\text{A-B}}{2}\end{bmatrix}$$

    = 2 sin 2x cos x sin x – 2 sin 2x sin x cos x = 0

    = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{3. (cos x + cos y)}^2 + \textbf{(sin x – sin y)}^2\\ = \textbf{4 cos}^2\frac{\textbf{x+y}}{\textbf{2}}\\\textbf{Sol.}\space\text{(cos x + cos y)}^2 + \text{(sin x –sin y)}^2 \\= \text{4 cos}^2\frac{\text{x+y}}{2}$$

    L.H.S. = (cos x + cos y)2 + (sin x – sin y)2

    $$=\bigg(\text{2 cos}\frac{x+y}{2}\text{cos}\frac{x-y}{2}\bigg)^{2} \\+ \bigg(\text{2 cos}\frac{x+y}{2}\text{sin}\frac{x-y}{2}\bigg)^{2}\\\text{(By formulae)}\\=\text{4 cos}^{2}\frac{x+y}{2}\text{cos}^{2}\frac{x-y}{2}\\+\text{4 cos}^{2}\frac{x+y}{2}\text{sin}^{2}\frac{x-y}{2}\\=\text{4 cos}^{2}\frac{x+y}{2}\bigg(\text{cos}^{2}\frac{x-y}{2} +\\\text{sin}^{2}\frac{x-y}{2} \bigg)\\=\text{4 cos}^{2}\frac{x+y}{2}$$

    (∵ cos2 x + sin2 y = 1)

    = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{4. (cos x – cos y)}^{2} + \textbf{(sin x – sin y)}^2\\ = \textbf{4 sin}^{2}\frac{\textbf{x-y}}{\textbf{2}}\\\textbf{Sol.}\space\text{(cos x – cos y)}^{2} + (\text{sin x - sin y})^{2}\\\text{4 sin}^{2}\space\frac{x-y}{2}$$

    ∵ L.H.S. = (cos x – cos y)2 + (sin x – sin y)2

    $$=\bigg(\text{-2 sin}\frac{x+y}{2}\text{sin}\frac{\text{x-y}}{2}\bigg)^{2} \\+ \bigg(\text{2 cos}\frac{x+y}{2}\text{sin}\frac{x-y}{2}\bigg)^{2}$$

    (By formulae)

    $$=\text{4 sin}^{2}\space\frac{x+y}{2}\text{sin}^{2}\frac{x-y}{2}\\+\text{4 cos}^{2}\frac{x+y}{2}\text{sin}^{2}\frac{x-y}{2}\\=\text{4 sin}^{2}\frac{x-y}{2}\bigg(\text{sin}^{2}\frac{x+y}{2} + \text{cos}^{2}\frac{x+y}{2}\bigg)\\=\text{4 sin}^{2}\frac{x-y}{2}=\text{R.H.S}$$

    (∵ cos2 x + sin2 x = 1)

    ∴ L.H.S. = R.H.S. Hence Proved.

    5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x.

    Sol. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

    L.H.S. = sin x + sin 3x + sin 5x + sin 7x = (sin 7x + sin x) + (sin 5x + sin 3x)

    $$=\text{2 sin}\frac{7x+x}{2}\text{cos}\frac{7x-x}{2}\\+\text{2 sin}\frac{5x+3x}{2}\text{cos}\frac{5x-3x}{2}\\\begin{bmatrix}\because\space \text{sin A + sin B}\\=\text{2 sin}\bigg(\frac{\text{A+B}}{2}\bigg)\text{cos}\bigg(\frac{\text{A-B}}{2}\bigg)\end{bmatrix}$$

    = 2 sin 4x cos 3x + 2 sin 4x cos x

    = 2 sin 4x (cos 3x + cos x)

    $$=\text{2 sin 4x 2 cos}\frac{3x+x}{2}\text{cos}\frac{3x-x}{2}\\\begin{bmatrix}\because\space\text{cos A + cos B}\\\text{2 cos}\bigg(\frac{\text{A+B}}{2}\bigg)\text{cos}\bigg(\frac{\text{A-B}}{2}\bigg)\end{bmatrix}$$

    = 4 sin 4x cos 2x cos x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{6.}\space\frac{\textbf{(sin 7x + sin 5x) + (sin 9x + sin 3x) }}{\textbf{(cos 7x + cos 5x) + (\text{cos 9x + cos 3x})}}\\=\textbf{tan 6x.}\\\textbf{Sol.}\space\frac{(\text{sin} 7x + \text{sin} 5x) + (\text{sin} 9x + \text{sin} 3x)}{\text{(cos 7x + cos 5x) + (cos 9x + cos 3x)}}\\=\text{tan 6x}\\\text{L.H.S}=\frac{(\text{sin 7x + sin 5x})(\text{sin}\space9x + \text{sin}\space3x)}{(\text{cos 7x + cos 5x}) + (\text{cos}\space9x + \text{cos}\space3x)}\\=\frac{\text{2 sin}\frac{7x+5x}{2}\text{cos}\frac{7x-5x}{2} + \text{2 sin}\frac{9x+3x}{2}\text{cos}\frac{9x-3x}{2}}{\text{2 cos}\frac{7x+5x}{2}\text{cos}\frac{7x-5x}{2} + 2\text{cos}\frac{9x+3x}{2}\text{cos}\frac{9x-3x}{2}}\\\begin{bmatrix}\because\text{sin A + sin B}\\=\text{2 sin}\bigg(\frac{\text{A+B}}{2}\bigg)\text{cos}\bigg(\frac{\text{A-B}}{2}\bigg)\end{bmatrix}$$

    $$=\frac{\text{2 sin 6x cos x + 2 sin 6x cos 3x}}{\text{2 cos 6x cos x + 2 cos 6x cos 3x}}\\=\frac{\text{2 sin 6x}(\text{cos x + cos 3x})}{\text{2 cos 6x}(\text{cos x + cos 3x})}$$

    = tan 6x = R.H.S.

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{7. sin 3x + sin 2x – sin x}\\ \textbf{= 4 sin x cos}\space\frac{\textbf{x}}{\textbf{2}}\textbf{cos}\frac{\textbf{3x}}{\textbf{2}}.$$

    $$\textbf{Sol.}\space\text{sin 3x + sin 2x - sin x}\\=\text{4 sin x cos}\frac{x}{2}\text{cos}\frac{3x}{2}$$

    L.H.S. = sin 3x + sin 2x – sin x

    = (sin 3x – sin x) + sin 2x

    $$=\text{2 cos}\frac{3x+x}{2}\text{sin}\frac{3x-x}{2}+\text{sin 2x}\\\begin{bmatrix}\because\space\text{sin C - sin D}\\= \text{2 cos}\frac{\text{C+D}}{2}\text{sin}\frac{\text{C-D}}{2}\end{bmatrix}$$

    = 2 cos 2x sin x + 2 sin x cos x

    (∵ sin 2x = 2 sin x cos x)

    = 2 sin x (cos 2x + cos x)

    $$\text{= 2\space sin x 2 cos x}\frac{2x+x}{2}\text{cos}\frac{2x-x}{2}\\\begin{bmatrix}\because\space\text{cos C + cos D} \\= 2 cos\frac{\text{C+D}}{2}\text{cos}\frac{\text{C-D}}{2}\end{bmatrix}\\\text{ = 4 sin x cos}\frac{3x}{2}\text{cos}\frac{x}{2}=\text{R.H.S.}$$

    ∴ L.H.S. = R.H.S. Hence Proved.

    $$\textbf{Find sin}\space\frac{\textbf{x}}{\textbf{2}},\textbf{cos}\frac{\textbf{x}}{\textbf{2}}\textbf{and}\frac{\textbf{x}}{\textbf{2}}\textbf{tan in each} \\\textbf{of the following:}\\\textbf{8. tan x}=-\frac{\textbf{4}}{\textbf{3}}, \textbf{where x in second quadrant.}\\\textbf{Sol.}\space\text{tan x}=-\frac{4}{3}$$

    Given that x lies in second quadrant.

    $$\text{i.e., }\frac{\pi}{2}\lt x \lt\pi\\\because\space\text{tan x}=\frac{\text{2 tan x}\frac{x}{2}}{\text{1- tan}^{2}\frac{x}{2}}=-\frac{4}{3}\\\therefore\space\text{3 tan x}\frac{x}{2}=-2\bigg(1-\text{tan }^{2}\frac{x}{2}\bigg)\\\text{3 tan}\frac{x}{2}=-2+2 \text{tan}^{2}\frac{x}{2}\\\Rarr\space\text{2 tan}^{2}\frac{x}{2}-3\text{tan}\frac{x}{2}-2=0\\\Rarr\space \text{2 tan}^{2}\frac{x}{2}-(4-1)\text{tan}\frac{x}{2}-2=0\\\Rarr\space\text{2 tan}\frac{x}{2}\bigg(\text{tan}\frac{x}{2}-2\bigg)+1\bigg(\text{tan}\frac{x}{2}-2\bigg)=0\\\Rarr\space\bigg(\text{2 tan}\frac{x}{2}+1\bigg)\bigg(\text{tan}\frac{x}{2}-2\bigg)=0$$

    $$\Rarr\space\text{tan}\frac{x}{2}=\text{2 or tan}\frac{x}{2}=-\frac{1}{2}\\\because\space\frac{\pi}{2}\lt x\lt\pi\\\Rarr\space\frac{\pi}{4}\lt\frac{x}{2}\lt\frac{\pi}{2}\\\text{i.e.,}\frac{x}{2}\text{lies in first quadrant.}\\\text{Therefore,}\text{tan}\frac{x}{2}=2=\frac{2}{1}\\=\frac{\text{perpendicular}}{\text{base}}=\frac{\text{AC}}{\text{AB}}$$

    Using Pythaogras theorem,

    (BC)2 = (AC)2 + (AB)2

    ⇒ (BC)2 = 4 + 1 = 5

    $$\Rarr\space\text{BC}=\sqrt{5}$$

    Trigonometric Functionsq(8)

    $$\text{Now,}\space\text{sin}\frac{x}{2}=\frac{\text{perpendicular}}{\text{hypotenuse}}\\=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\\\therefore\space\text{cos}\frac{x}{2}=\frac{\text{base}}{\text{hypotenuse}}\\=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$$

    $$\textbf{10. sin x =}\frac{\textbf{1}}{\textbf{4}},\textbf{where x is in second quadrant.}\\\textbf{Sol.}\space\because\text{sin x}=\frac{1}{4}\\\because\space\text{sin x}=\frac{\text{2 tan x}\frac{x}{2}}{1+\text{tan}^{2}\frac{x}{2}}\\\therefore\space\frac{1}{4}=\frac{\text{2 tan x}\frac{x}{2}}{1+ \text{tan}^{2}\frac{x}{2}}\\\Rarr\space 1+\text{tan}^{2}\frac{x}{2}=\text{8 tan}\frac{x}{2}\\\Rarr\space\text{tan}^{2}\frac{x}{2}-\text{8 tan}\frac{x}{2}+1=0\\\Rarr\space\text{tan}\frac{x}{2}=\frac{8\pm\sqrt{64-4}}{2}\\\Rarr\space\text{tan}\frac{x}{2}=\frac{8\pm 2\sqrt{15}}{2}$$

    $$\Rarr\space\text{tan}\frac{x}{2}=4\pm\sqrt{15}\\\because\space\frac{\pi}{2}\lt2\lt\pi\\\Rarr\space\frac{\pi}{4}\lt\frac{x}{2}\lt\frac{\pi}{2}\\\text{i.e.,}\frac{x}{2}\space\text{lies in Ist quadrant.}\\\Rarr\space\text{tan}\frac{x}{2}=4+\sqrt{15}\\\text{Now,}\space\text{sec}^{2}\frac{x}{2}=1+\text{tan}^{2}\frac{x}{2}\\=1+(4+\sqrt{15})^{2}\\=1+16+15+8\sqrt{15}\\\Rarr\space\text{sec}^{2}\frac{x}{2}=32+8\sqrt{5}\\\Rarr\space\text{sec}^{2}\frac{x}{2}=8(4+\sqrt{15})$$

    $$\Rarr\space\text{cos}^{2}\frac{x}{2}=\frac{1}{\text{sec}^{2}\frac{x}{2}}\\=\frac{1}{8(4+\sqrt{15})}×\frac{4-\sqrt{15}}{4-\sqrt{15}}\\\Rarr\space\text{cos}^{2}\frac{x}{2}=\frac{(4-\sqrt{15})}{8}×2\\\Rarr\space\sqrt{\frac{4-\sqrt{15}}{8}}\\=\text{cos}\frac{x}{2}=\sqrt{\frac{2(4-\sqrt{15})}{2×8}}\\=\sqrt{\frac{8-2\sqrt{15}}{16}}$$

    $$\text{cos}\frac{x}{2}=\frac{\sqrt{8-2\sqrt{15}}}{4}\\\text{Now,}\space\text{sin}^{2}\frac{x}{2}=1-\text{cos}^{2}\frac{x}{2}\\1-\frac{8-2\sqrt{15}}{16}\\\Rarr\space\text{sin}^{2}\frac{x}{2}=\frac{16-8+2\sqrt{15}}{16}\\\Rarr\space\text{sin}^{2}\frac{x}{2}=\frac{8+2\sqrt{15}}{16}\\\Rarr\space\text{sin}\frac{x}{2}=\frac{\sqrt{8+2\sqrt{15}}}{4}\\\bigg(\because\space\frac{x}{2}\space\text{lies in Ist quadrant}\bigg)$$

    Share page on

    CBSE CLASS 11 BOOKS