Exercise 15.1
Direction (Q. Nos. 1 and 2): Find the mean deviation about the mean for the following series.
1. 4, 7, 8, 9, 10, 12, 13, 17.
Sol. Mean of the given series
$$\bar{x}=\frac{\text{Sum of terms}}{\text{Number of terms}}=\frac{\Sigma x_i}{n}\\=\frac{4+7+8+9+10+12+13+17}{8}=10$$
The absolute values of the respective deviation from the mean are 6, 3, 2, 1, 2, 2, 3, 7.
$$\text{Mean deviation about mean =}\\\frac{1}{n}\displaystyle\sum_{i=1}^n|(x_i-\bar x)|\\=\frac{6+3+2+1+0+2+3+7}{8}\\=\frac{24}{8}=3.$$
2. 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
Sol. Mean of the given series
$$\bar x=\frac{\text{Sum of terms}}{\text{Number of terms}}=\frac{\Sigma x_i}{n}\\=\\\frac{38+70+48+40+42+55+63+46+54+44}{10}\\=50$$
The absolute values of the respective deviation from the mean are
12, 20, 02, 10, 08, 05, 13, 04, 04, 06
Mean deviation about mean =
$$\frac{1}{n}\space\displaystyle\sum_{i=1}^n|x_i-\bar x_i|\\=\frac{84}{10}$$
= 8·4.
Direction (Q. Nos. 3 and 4): Find the mean deviation about the median for the following data.
3. 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17.
Sol. The given data is 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Arranging in ascending order
10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18
Number of observation = 12 (even)
$$\text{Median M}=\\\frac{\frac{\text{Nth}}{2}\text{observation} + \bigg(\frac{N}{2}+1\bigg)\text{th observation}}{2}\\=\frac{\bigg(\frac{12}{2}\bigg)\text{th observation} + \bigg(\frac{12}{2}+1\bigg)\text{th observation}}{2}\\=\frac{\text{6th observation + 7th observation}}{2}\\=\frac{13+14}{2}=\frac{27}{2}$$
⇒ M = 13.5
The abslute values of the respective deviation from the median | xi – M | are
3·5, 2·5, 1·5, 0·5, 0·5, 0·5, 2·5, 2·5, 3·5, 3·5, 4·5
$$\text{Therefore}\space\displaystyle\sum_{i=1}^{12}|x_i- M|=28\\\therefore\space\text{Mean deviation about median =}\\\space\frac{\displaystyle\sum_{i=1}^n|x_i-M|}{n}=\frac{28}{12}=2.32$$
4. 36, 72, 46, 42, 60, 45, 53, 46, 51, 49.
Sol. The given data is 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Arranging the data in ascending order,
36, 42, 45, 46, 46, 49, 51, 53, 60, 72
Number of observations = 10 (even)
$$\text{Median M}=\\\frac{\frac{N}{2}\text{th observation} + \bigg(\frac{N}{2}+1\bigg)\text{th observation}}{2}\\=\frac{\bigg(\frac{10}{2}\bigg)\text{th observation} + \bigg(\frac{10}{2}+1\bigg)\text{th observation}}{2}\\=\frac{\text{5th observation + 6th observation}}{2}\\=\frac{46+49}{2}=47.5$$
The absolute values of the respective deviation from the median | xi – M | are
11·5, 5·5, 2·5, 1·5, 1·5, 1·5, 3·5, 5·5, 12·5, 24·5
$$\text{Therefore}\space\displaystyle\sum_{i=1}^n|(x_i-M)|$$
= 11·5 + 5·5 + 2·5 + … + 12·5 + 24·5
= 70
$$\text{M.D. (about median) =}\space\frac{1}{n}\displaystyle\sum_{i=1}^n|x_i-M|\\=\frac{70}{10}$$
= 7.
Direction (Q. Nos. 5 and 6): Find the mean deviation about the mean for the data in following tables.
5.
Xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Sol.
xi | fi | fixi | $$|x_i-\bar x|$$ | $$f_i|x_i-\bar x|$$ |
5 | 7 | 35 | | 5-14 | = 9 | 63 |
10 | 4 | 40 | | 10-14 | = 4 | 16 |
15 | 6 | 90 | | 15-14 | = 1 | 06 |
20 | 3 | 60 | | 20-14 | = 6 | 18 |
25 | 5 | 125 | | 25-14 | = 11 | 55 |
Total | Σfi=25 | 350 | 158 |
$$\text{Mean}=\bar x = \frac{\Sigma f_ix_i}{\text{N}}\\=\frac{350}{25}=14$$
[N = Σfi = 25]
$$\therefore\space\text{Mean deivation about mean = }\\\space\frac{\Sigma f_i|x_i-\bar x|}{\Sigma f_i}=\frac{158}{25}=6.32$$
6.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Sol.
xi | fi | fixi | $$|x_i-\bar x|$$ | $$f_i|x_i-\bar x|$$ |
10 | 4 | 40 | |10-50|=40 | 160 |
30 | 24 | 720 | |30-50|=20 | 480 |
50 | 28 | 1400 | |50-50|=00 | 000 |
70 | 16 | 1120 | |70-50|=20 | 320 |
90 | 8 | 720 | |90-50|=40 | 320 |
Total | Σfi=80 | Σfixi=4000 | 1280 |
$$\text{Mean}=\frac{\Sigma f_ix_i}{\Sigma f_i}=\frac{40000}{80}=50\\\lbrack\text{N}=\Sigma f_i=80\rbrack\\\therefore\space\text{Mean deviation about mean =}\\\frac{\Sigma f_i|x_i-\bar x|}{\Sigma f_i}=\frac{1280}{80}=16.$$
Direction (Q. Nos. 7 and 8): Find the mean deviation about the median for the data in following tables.
7.
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Sol.
xi | fi | c.f. |
5 | 8 | 8 |
7 | 6 | 14 |
9 | 2 | 16 |
10 | 2 | 18 |
12 | 2 | 20 |
15 | 6 | 26 |
Here, N = Σfi = 26 (even)
$$\text{Median M}=\\\frac{\frac{N}{2}\text{th observation + }\bigg(\frac{N}{2}+1\bigg)\text{th observation}}{2}\\=\frac{\frac{26}{2}\text{th observation} + \bigg(\frac{26}{2}+1\bigg)\text{th observation}}{2}\\=\frac{13\text{th observation + } 14\text{th observation}}{2}\\=\frac{7+7}{2}=\frac{14}{2}=7$$
|xi-M| | fi | fi|xi- M| |
|5-7|=2 | 8 | 16 |
|7-7|=0 | 6 | 00 |
|9-7|=2 | 2 | 04 |
|10-7|=3 | 2 | 06 |
|12-7|=5 | 2 | 10 |
|15-7|=8 | 6 | 48 |
Σfi|x-M|=84 |
$$\therefore\space\text{Median deviation about median =}\\\frac{\Sigma f_i|x_i-M|}{\Sigma f_i}=\frac{84}{26}=3.23$$
8.
Sol.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
xi | fi | CF |
15 | 3 | 3 |
21 | 5 | 8 |
27 | 6 | 14 |
30 | 7 | 21 |
35 | 8 | 29 |
Total | Σfi=29 |
Here, N = Σfi = 29 (odd)
$$\therefore\space\text{Median M}=\bigg(\frac{\text{N+1}}{2}\bigg)\space \text{th observation}\\=\bigg(\frac{29+1}{2}\bigg)\space\text{th value}=15 \text{th}$$
⇒ M = 30
|xi-M| | fi | fi|xi-M| |
|15-30|=15 | 3 | 45 |
|21-30|=9 | 5 | 45 |
|27-30|=3 | 6 | 18 |
|30-30|=0 | 7 | 0 |
|35-30|=5 | 8 | 40 |
Σfi|x - M|= 148 |
$$\therefore\space\text{Mean deviation about median =}\\\frac{\Sigma f_i|x_i-M|}{\Sigma f_i}=\frac{148}{29}=5.1$$
9. Find the mean deviation about the mean for the data in Exercises 9 to 10.
Income per day | Number of persons |
0 – 100 | 4 |
100 – 200 | 8 |
200 – 300 | 9 |
300 – 400 | 10 |
400 – 500 | 7 |
500 – 600 | 5 |
600 – 700 | 4 |
700 – 800 | 3 |
Sol.
Class | fi | Mid value (xi) | $$u_i=\frac{x_i-A}{h}\\\text{A = 350, h = 100}$$ | fiui | $$|x_i-\bar x|$$ | $$f_i|x_i-\bar{x}|$$ |
0 – 100 | 4 | 50 | -3 | -12 | 308 | 1232 |
100 – 200 | 8 | 150 | -2 | -16 | 208 | 1664 |
200-300 | 9 | 250 | -1 | -9 | 108 | 972 |
300 – 400 | 10 | 350 | 0 | 0 | 8 | 80 |
400 – 500 | 7 | 450 | 1 | 7 | 92 | 644 |
500 – 600 | 7 | 550 | 2 | 10 | 192 | 960 |
600 – 700 | 4 | 650 | 3 | 12 | 292 | 1168 |
700 – 800 | 3 | 750 | 4 | 12 | 392 | 1176 |
Total | Σfi=50 | Σfidi=4 | $$\Sigma f_i|x_i-\bar x|=7896$$ |
$$\text{Mean}\space\bar x=A+\frac{\Sigma f_iu_i}{\Sigma f_i}×h\\=350+\frac{4}{50}×100\\=350+8\\\bar x= 358\\\text{Mean deviation about the mean =}\\\space\frac{\Sigma f_i|x_i-\bar x|}{\Sigma f_i}\\=\frac{7896}{50}=157.92$$
10.
Height of em | Number of boys |
95 – 105 | 9 |
105 – 115 | 13 |
115 – 125 | 26 |
125 – 135 | 30 |
135 – 145 | 12 |
145 – 155 | 10 |
Sol.
Class | fi | Mid value (xi) | $$u_i=\frac{x_i-A}{h}\\\text{A = 130, h = 10}$$ | fiui | $$|x_i-\bar x|$$ | $$f_i|x_i-\bar x|$$ |
95 – 105 | 9 | 100 | -3 | -27 | 25.3 | 227.7 |
105 – 115 | 13 | 110 | – 2 | – 26 | 15.3 | 198.9 |
115 – 125 | 26 | 120 | – 1 | – 26 | 5.3 | 137.8 |
125 – 135 | 30 | 130 | 0 | 0 | 4.7 | 141.0 |
135 – 145 | 12 | 140 | 1 | 12 | 14.7 | 176.4 |
145 – 155 | 10 | 150 | 2 | 20 | 24.7 | 247.0 |
Total | 100 | -47 | 1128.8 |
$$\text{Mean}\space \bar x= A+\frac{\Sigma f_iu_i}{\Sigma f_i}×h\\=130+\frac{(-47)}{100}×10$$
= 130 – 4.7 = 125.3
$$\text{Mean deviation about mean =}\space\frac{\Sigma f_i|x_i-\bar x|}{\Sigma f_i}\\=\frac{1128.8}{100}=11.29$$
11. Find the mean deviation about median for the following data:
Marks | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of girls | 6 | 8 | 14 | 16 | 4 | 2 |
Sol.
Class | fi | CF | Mid value xi | $$|x_i-M|$$ | $$f_i|x_i-M|$$ |
0 – 10 | 6 | 6 | 5 | |5-27.86|=22.86 | 137.16 |
10 – 20 | 8 | (14)C | 15 | |15-27.86|=12.86 | 102.88 |
(20-30) | (14) | 28 | 25 | |25-27.86|=2.86 | 40.04 |
30-40 | 16 | 44 | 35 | |35-27.86|=7.14 | 114.24 |
40 – 50 | 4 | 48 | 45 | |45-27.86|=17.14 | 68.56 |
50-60 | 2 | 50 | 55 | |55-27.86|=27.14 | 54.28 |
Total | Σfi = 50 | 517.16 |
$$\frac{N}{2}=\frac{50}{2}=25$$
⇒ C(cumulative frequnecy of pre-median class)
= 14, f = 14, l = 20, h = 10
$$\text{Median}\space M = l+\frac{\frac{N}{2}-C}{f} ×h\\=20+\frac{25-14}{14}×10\\=20+\frac{11×10}{14}$$
= 20 + 7.86 = 27.86
$$\therefore\space\text{Mean deivation about mean =}\space\frac{\Sigma f_i|x_i-M|}{\Sigma f_i}\\=\frac{517.16}{50}=10.34$$
12. Calculate the mean deviation about median for the age distribution of 100 persons given below:
Age | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 | 51 - 55 |
Number | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Sol.
Class | fi | CF | Mid value xi | $$|x_i-M|$$ | $$f_i|x_i-M|$$ |
15.5 – 20.5 | 5 | 5 | 18 | | 18 – 38 | = 20 | 100 |
20.5 – 25.5 | 6 | 11 | 23 | | 23 – 38 | = 15 | 90 |
25.5 – 30.5 | 12 | 23 | 28 | | 28 – 38 | = 10 | 120 |
30.5 – 35.5 | 14 | 37 | 33 | | 33 – 38 | = 5 | 70 |
35.5 – 40.5 | 26 | 63 | 38 | | 38 – 38 | = 0 | 0 |
40.5 – 45.5 | 12 | 75 | 43 | | 43 – 38 | = 5 | 60 |
45.5 – 50.5 | 16 | 91 | 48 | | 48 – 38 | = 10 | 160 |
50.5 – 55.5 | 9 | 100 | 53 | | 53 – 38 | = 15 | 135 |
Total | 100 | Σfi|xi-M|=735 |
Here, N = 100
$$\therefore\space\frac{N}{2}=50$$
⇒ l = 35.5, C = 37, f = 26, h = 5
$$\because\space M=l+\frac{\frac{N}{2}-C}{f}×h\\\text{M =}\space 35.5+\frac{50-37}{26}×5\\=35.5+\frac{13}{26}×5$$
= 35.5 + 2.5 = 38
$$\therefore\space\text{Mean deviation about median =}\space\frac{\Sigma f_i|x_i-M|}{\Sigma f_i}\\=\frac{735}{100}=7.35$$
Exercise 15.2
Find the mean and variance for each of the following data in Q. No. 1 to 5:
1. 6, 7, 10, 12, 13, 4, 8, 12.
Sol.
xi | $$(x_i-\bar x)$$ | $$(x_i-\bar x)^2$$ |
6 | -3 | 9 |
7 | -2 | 4 |
10 | -1 | 1 |
12 | 3 | 9 |
13 | 4 | 16 |
4 | -5 | 25 |
8 | -1 | 1 |
12 | 3 | 9 |
Total 72 | 722 | 74 |
$$\text{Mean}=\frac{\Sigma x_i}{n}=\frac{72}{8}=9\\\text{and}\space\text{Variance}\space\sigma^2=\frac{1}{n}\space\displaystyle\sum_{i=1}^{n}(x_i-\bar x)^2\\=\frac{1}{8}×74$$
2. First n natural numbers.
Sol.
xi | xi2 |
1 | 12 |
2 | 22 |
3 | 32 |
4 | 42 |
⫶ | ⫶ |
⫶ | ⫶ |
⫶ | ⫶ |
n | n2 |
$$\text{Total}=\frac{n(n+1)}{2}$$ | $$\frac{n(n+1)(2n+1)}{6}$$ |
$$\text{Mean}=\frac{\Sigma x_i}{n}\\\bar x=\frac{n(n+1)}{2n}\\=\frac{n+1}{2}\\\text{Variance}=\frac{\Sigma x_i^2}{n}-\bigg(\frac{\Sigma x_i}{n}\bigg)^2\\=\frac{n(n+1)(2n+1)}{6n}-\bigg[\frac{n(n+1)}{2n}\bigg]^2\\=\frac{(n+1)(2n+1)}{6}-\frac{(n+1)^2}{4}\\=\frac{(n+1)}{2}\bigg[\frac{2n+1}{3}-\frac{n+1}{2}\bigg]$$
$$=\frac{(n+1)}{2}\space\bigg[\frac{4n+2-3n-3}{6}\bigg]\\=\bigg(\frac{n+1}{2}\bigg)\bigg[\frac{n-1}{6}\bigg]=\frac{n^2-1}{12}$$
3. First 10 multiples of 3.
Sol. First 10 multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27, 30.
xi | $$(x_i-\bar x)$$ | $$(x_i-\bar x)^2$$ |
3 | – 13·5 | 182.25 |
6 | -10.5 | 110.25 |
9 | -7.5 | 56.25 |
12 | -4.5 | 20.25 |
15 | -1.5 | 2.25 |
18 | 1.5 | 2.25 |
21 | 4.5 | 20.25 |
24 | 7.5 | 56.25 |
27 | 10.5 | 110.25 |
30 | 13.5 | 182.25 |
Total = 165 | $$\Sigma(x_i-\bar x)^2=742.5$$ |
$$\text{Mean}\space\bar x=\frac{\Sigma x}{n}\\=\frac{165}{10}=16.5\\\text{Variance}\space\sigma^2=\frac{1}{n}\displaystyle\sum_{i=1}^{n}(x_i-\bar x)^2\\=\frac{742.5}{10}$$
= 74·25.
4.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Sol.
xi | fi | fixi | xi2 | fixi2 |
6 | 2 | 12 | 36 | 72 |
10 | 4 | 40 | 100 | 400 |
14 | 7 | 98 | 196 | 1372 |
18 | 12 | 216 | 324 | 3888 |
24 | 8 | 192 | 576 | 4608 |
28 | 4 | 112 | 784 | 3136 |
30 | 3 | 90 | 900 | 7200 |
Total | Σfi=40 | Σfixi=760 | Σfixi2=16176 |
$$\text{Mean}=\frac{\Sigma f_ix_i}{\Sigma f_i}=\frac{760}{40}=19\\\text{Variance}=\frac{\Sigma f_ix_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_ix_i}{\Sigma f_i}\bigg)\\=\frac{16176}{40}-\bigg(\frac{760}{40}\bigg)^2$$
σ2 = 404.4 – (19)2
σ2 = 404.4 – 361
= 43.4
5.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
Sol.
xi | fi | fixi | xi2 | fixi2 |
92 | 3 | 276 | 8464 | 25392 |
93 | 2 | 186 | 8649 | 17298 |
97 | 3 | 291 | 9409 | 28227 |
98 | 2 | 196 | 9604 | 19208 |
102 | 6 | 612 | 10404 | 62424 |
104 | 3 | 312 | 10816 | 32448 |
109 | 3 | 327 | 11881 | 35643 |
Total | Σfi=22 | Σfixi=2200 | Σfixi2=220640 |
$$\text{Mean}\space\bar x=\frac{\Sigma f_ix_i}{\Sigma f_i}=\frac{2200}{22}=100\\\text{Variance}=\frac{\Sigma f_ix_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_ix_i}{\Sigma f_i}\bigg)^2\\\sigma^2=\frac{220640}{22}-(100)^2$$
σ2 = 10029.09 – 10000
= 29.09
6. Find the mean and standard deviation of following table using short-cut method:
xi | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
fi | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
Sol.
Mid-value xi | Frequency fi | Deviation from mean di = xi – A, A = 64 | fidi | di2 | fidi2 |
60 | 2 | -4 | -8 | 16 | 32 |
61 | 1 | -3 | -3 | 9 | 9 |
62 | 12 | -3 | -24 | 4 | 48 |
63 | 29 | -1 | -29 | 1 | 29 |
64 | 25 | 0 | 00 | 0 | 00 |
65 | 12 | 1 | 12 | 1 | 12 |
66 | 10 | 2 | 20 | 4 | 40 |
67 | 4 | 3 | 12 | 9 | 36 |
68 | 5 | 4 | 20 | 16 | 80 |
Total | Σfi=100 | Σdi=0 | Σfidi=0 | Σfidi2=286 |
$$\text{Mean}=A+\frac{\Sigma f_id_i}{\Sigma f_i}\\=\bar x= 64+\frac{0}{100}=64\\\text{Standard deviation}\space\sigma=\sqrt{\frac{\Sigma f_id_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_id_i}{\Sigma f_i}\bigg)^2}\\=\sqrt{\frac{286}{100}-\bigg(\frac{0}{100}\bigg)^2}\\=\sqrt{2.86}=1.69$$
Direction (Q. Nos. 7 and 8): Find the mean and variance for the following frequency distribution in following tables.
7.
Class | 0 – 30 | 30 – 60 | 60 – 90 | 90 – 120 | 120 – 150 | 150 – 180 | 180 – 210 |
Frequency | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
Sol.
Class | Frequency fi | Mid value xi | Deviation from mean $$d_i=\frac{x_i-A}{h},\space\text{A=105}$$ | fidi | di2 | fidi2 |
0 – 30 | 2 | 15 | -3 | -6 | 9 | 18 |
30-60 | 3 | 45 | -2 | -6 | 4 | 12 |
60 – 90 | 5 | 75 | -1 | -5 | 1 | 5 |
90 – 120 | 10 | 105 | 0 | 0 | 0 | 0 |
120 – 150 | 3 | 135 | 1 | 3 | 1 | 3 |
150 – 180 | 5 | 165 | 2 | 10 | 4 | 20 |
180 – 210 | 2 | 195 | 3 | 6 | 9 | 18 |
Total | 30 | Σfidi=2 | Σfidi2=76 |
$$\text{Mean}= A+\frac{\Sigma f_i d_i}{\Sigma f_i}×h\\=105+\frac{2}{30}×30\space(\because h=30)$$
= 105 + 2 = 107
$$\text{Variance}=\bigg[\frac{\Sigma f_id_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_id_i}{\Sigma f_i}\bigg)^2\bigg]×h^2\\=\bigg[\frac{76}{30}-\bigg(\frac{2}{30}\bigg)^2\bigg]×(30)^2\\=\bigg[\frac{76}{30}-\frac{4}{30×30}\bigg]×900\\=\bigg[\frac{76×30-4}{900}\bigg]×900\\=\bigg(\frac{2280-4}{900}\bigg)\\=\frac{2276}{900}×900=2276$$
8.
Class | 0 – 10 | 10 – 20 | 20 –30 | 30 –40 | 40 – 50 |
Frequency | 5 | 8 | 15 | 16 | 6 |
Sol.
Class | Frequency fi | Mid value xi | $$\text{Mid-value}\\d_i=\frac{x_i=25}{10}$$ | fidi | di2 | fidi2 |
0 – 10 | 5 | 5 | -2 | -10 | 4 | 20 |
10-20 | 8 | 15 | -1 | -8 | 1 | 8 |
20-30 | 15 | 25 | 0 | 0 | 0 | 0 |
30 – 40 | 16 | 35 | 1 | 16 | 1 | 16 |
40 – 50 | 6 | 45 | 2 | 12 | 4 | 24 |
Total | Σfi = 50 | Σfidi=10 | Σfidi2=68 |
$$\text{Mean}\space(\bar x)= A + \frac{\Sigma f_id_i}{\Sigma f_i}×h\\=25+\frac{10}{50}×10\\\text{25 + }\frac{100}{50}=25+2=27\\\text{Variance =}\space\bigg[\frac{\Sigma f_id_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_id_i}{\Sigma f_i}\bigg)^2\bigg]×h^2\\=\bigg[\frac{68}{50}-\bigg(\frac{10}{50}\bigg)^2\bigg]×(10)^2\\=\frac{[68×50-100]}{50×50}×100\\=\frac{(3400-100)}{50}×2$$
$$=\frac{3300×2}{50}=\frac{6600}{50}=132.$$
9. Find the mean, variance and standard deviation using short-cut method.
Height in cm | Number of children |
70 – 75 | 3 |
75 – 80 | 4 |
80 – 85 | 7 |
85 – 90 | 7 |
90 – 95 | 15 |
95 – 100 | 9 |
100 – 105 | 6 |
105 – 110 | 6 |
110 – 115 | 3 |
Sol.
Class | Frequency fi | Mid value xi | $$\text{Mid-value}\\d_i=\frac{x_i-92.5}{5}$$ | fidi | di2 | fidi2 |
70 – 75 | 3 | 72.5 | -4 | -12 | 16 | 48 |
75 – 80 | 4 | 77.5 | – 3 | – 12 | 9 | 36 |
80 – 85 | 7 | 82.5 | – 2 | – 14 | 4 | 28 |
85 – 90 | 7 | 87.5 | – 1 | – 7 | 1 | 7 |
90 – 95 | 15 | 92.5 | 0 | 0 | 0 | 0 |
95 – 100 | 9 | 97.5 | 1 | 9 | 1 | 9 |
100 – 105 | 6 | 102.5 | 2 | 12 | 4 | 24 |
105 – 110 | 6 | 107.5 | 3 | 18 | 9 | 54 |
110 – 115 | 3 | 112.5 | 4 | 12 | 16 | 48 |
Total | 60 | Σfidi = 6 | Σfidi2=254 |
Let assumed mean, A = 92.5, h = 5
$$\text{Mean }(\bar x)= \text{A} +\frac{\Sigma f_id_i}{\Sigma f_i}×h\\=92.5+\frac{6}{60}×5\\=92.5+\frac{5}{10}\\=92.5 + 0.5=93\\\text{Variance}=\bigg[\frac{\Sigma f_id_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_id_i}{\Sigma f_i}\bigg)^2\bigg]×h^2\\=\bigg[\frac{254}{60}-\bigg(\frac{6}{60}\bigg)^2\bigg]×(5)^2\\=\bigg[\frac{254×60-36}{60×60}\bigg]×25$$
$$=\frac{(15240-36)}{60×12}×5\\=\frac{15204×5}{720}=105.58\\\text{Standard deviation}\space\sigma=\sqrt{\text{Variance}}\\=\sqrt{105.58}=10.27$$
10. The diameter of circles (in mm) drawn in design are given below:
Diameter (in cm) | 33 – 36 | 37 – 40 | 41 – 44 | 45 – 48 | 49 – 52 |
Number of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
Sol.
Class | fi | Mid value xi | $$\text{Deviation from mean}\\d_i=\frac{x_i-92.5}{5},\space\text{A=42.5, h=4}$$ | fidi | di2 | fidi2 |
32.5 – 36.5 | 15 | 34.5 | -2 | -30 | 4 | 60 |
36.5 – 40.5 | 17 | 38.5 | -1 | -17 | 1 | 17 |
40.5 – 44.5 | 21 | 42.5 | 0 | 0 | 0 | 0 |
44.5 – 48.5 | 22 | 46.5 | 1 | 22 | 1 | 22 |
48.5 – 52.5 | 25 | 50.5 | 2 | 50 | 4 | 100 |
Total | 100 | 25 | 199 |
$$\text{Mean}\space\bar x = A+\frac{\Sigma f_id_i}{\Sigma f_i}×h\\=42.5+\frac{25}{100}×4\\\text{= 42.5 + 1 = 43.5}\\\text{Standard deviation}\space \sigma =\\ \sqrt{\frac{\Sigma f_id_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_id_i}{\Sigma f_i}\bigg)^2}×h\\=\sqrt{\frac{199}{100}-\bigg(\frac{25}{100}\bigg)^2}×4\\=\sqrt{1.99-0.0625}×4\\=\sqrt{1.9275}×4$$
= 1·388 × 4
= 5·552
= 5·55.
Exercise 15.3
1. From the data given below state which group is more variable A or B ?
Marks | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 | 70 – 80 |
Group A | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group B | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
Sol. For group A,
Class | fi | xi | $$d_i=\frac{x_i-45}{10}$$ | fidi | di2 | fidi2 |
10 – 20 | 9 | 15 | -3 | -27 | 9 | 81 |
20 – 30 | 17 | 25 | -2 | -34 | 4 | 68 |
30 – 40 | 32 | 35 | -1 | -32 | 1 | 32 |
40 – 50 | 33 | 45 | 0 | 0 | 0 | 0 |
50 – 60 | 40 | 55 | 1 | 40 | 1 | 40 |
60 – 70 | 10 | 65 | 2 | 20 | 4 | 40 |
70 – 80 | 9 | 75 | 3 | 27 | 9 | 81 |
Total | Σfi = 150 | Σfidi=-6 | Σfidi2=342 |
A = 45, n = 10
$$\text{Mean}\space\bar x = A + \frac{\Sigma f_id_i}{\Sigma f_i}×h\\=45 + \frac{(-6)}{150}×10\\=45-\frac{60}{150}$$
= 45 – 0.4 = 44.6
$$\text{Standard deviation}\space\sigma=\\\sqrt{\frac{\Sigma f_id_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_id_i}{\Sigma f_i}\bigg)^2}×h\\\sqrt{\frac{342}{150}-\bigg(-\frac{6}{150}\bigg)^2}×10\\=\sqrt{\frac{342×150-36}{150×150}}×10\\=\frac{10}{150}\sqrt{51300-36}\\=\frac{1}{15}×\sqrt{51264}\\=\frac{226.42}{15}=15.09$$
∵ (Coefficient of variance) (CV for group A) =
$$\frac{\sigma}{x}×100=\frac{15.09}{44.6}×100\\=\frac{1509}{44.6}=33.83$$
For group B.
Class | fi | xi | $$d_i=\frac{x_i-45}{10}$$ | fidi | di2 | fidi2 |
10 – 20 | 10 | 15 | -3 | -30 | 9 | 90 |
20 – 30 | 20 | 25 | – 2 | – 40 | 4 | 80 |
30 – 40 | 30 | 35 | – 1 | – 30 | 1 | 30 |
40 – 50 | 25 | 45 | 0 | 00 | 0 | 00 |
50 – 60 | 43 | 55 | 1 | 43 | 1 | 43 |
60 – 70 | 15 | 65 | 2 | 30 | 4 | 60 |
70 – 80 | 7 | 75 | 3 | 21 | 9 | 63 |
Total | 150 | Σfidi=-6 | Σfidi2=-366 |
$$\text{Mean}\space \bar x= A + \frac{\Sigma f_id_i}{\Sigma f_i}×h\\=45+\frac{(-6)}{150}×10\\=45-\frac{60}{150}$$
= 45 – 0.4 = 44.6
$$\text{Standard deviation}\space\sigma=\\\sqrt{\frac{\Sigma f_id_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_id_i}{\Sigma f_i}\bigg)^2}×h\\=\sqrt{\frac{366}{150}-\bigg(\frac{-6}{150}\bigg)^2}×10\\=\sqrt{\frac{366×150-36}{150×150}}×10\\=\frac{10}{150}\space\sqrt{54900-36}\\=\frac{1}{15}×\sqrt{54864}\\=\frac{234.23}{15}=15.61$$
$$\text{CV for group B}=\frac{\sigma}{x}×100\\=\frac{15.61}{44.6}×100\\=\frac{1561}{44.6}=35$$
∵ Coefficient of variation of group B is greater than the coefficient of variation from group A. Hence, group B is more variable than group A.
2. From the prices of shares X and Y below, find out which is more stable in value.
X | 35 | 54 | 52 | 53 | 56 | 58 | 52 | 50 | 51 | 49 |
Y | 108 | 107 | 105 | 105 | 106 | 107 | 104 | 103 | 104 | 101 |
X | di=X-A | di2 |
35 | -17 | 289 |
54 | 2 | 4 |
52 | 0 | 0 |
53 | 1 | 1 |
56 | 4 | 16 |
58 | 6 | 36 |
52 | 0 | 0 |
50 | -2 | 4 |
51 | -1 | 1 |
49 | -3 | 9 |
Total | Σdi=-10 | Σdi2=360 |
where, A = (assumed mean) = 52
$$\text{For share X,}\space\text{Mean}\space\bar X= A + \frac{\Sigma d_1}{n}\\=52-\frac{10}{10}$$
= 52 – 1 = 51
$$\text{Standard deviation}\space\sigma\\=\sqrt{\frac{\Sigma d_1^2}{n}-\bigg(\frac{\Sigma d_1}{n}\bigg)^2}\\=\sqrt{\frac{360}{10}-\bigg(\frac{-10}{10}\bigg)^2}\\=\sqrt{36-1}\\=\sqrt{35}$$
= 5.92
$$\text{Coefficient of variance for share X =}\frac{\sigma}{X}×100\\\frac{5.92}{51}×100\\=\frac{592}{51}=11.60$$
Y | d2 = Y – A | d22 |
108 | 3 | 9 |
107 | 2 | 4 |
105 | 0 | 0 |
106 | 1 | 1 |
107 | 2 | 4 |
104 | -1 | 1 |
103 | -2 | 4 |
104 | -1 | 1 |
101 | -4 | 16 |
Σdi=0 | Σdi2 = 40 |
$$\text{For share Y ,}\\\space\text{Mean}\space \bar Y = A + \frac{\Sigma d_2}{n}\\=105+\frac{0}{10}=105\space\text{where A = 105}\\\text{Standard deviation}\space\sigma=\\\sqrt{\frac{\Sigma d_2^2}{n}-\bigg(\frac{\Sigma d_2}{n}\bigg)^2}\\=\sqrt{\frac{40}{10}-0}\\\sqrt{4}=2\\\Rarr\space\text{CV for share = }\frac{\sigma}{Y}×100\\=\frac{2}{105}×100=\frac{200}{105}=1.90$$
∵ CV of share X > CV of share Y
∴ Share Y is more stable than share X.
3. An anlaysis of monthly wages paid to workers in two Firms A and B belonging to the same industry.
Gives the following results:
Firm A | Firm B | |
Number of wages earners | 586 | 648 |
Mean of monthly wages | ₹ 5253 | ₹ 5253 |
Variance of distribution of wages | 100 | 121 |
(i) Which firm A or B pays out larger amount as monthly wages ?
(ii) Which firm A or B shows greater variability in individual wages ?
Sol. For firm A,
Number of wages earners = 586
$$\text{Mean of monthly wages =}\bar x=₹5253$$
Variance of distribution of wages = 100
$$\text{Standard deviation}\space\sigma=\sqrt{100}=10$$
Amount paid by firm A = 586 × 5253 = ₹3078258 …(i)
$$\text{Coefficient of variation}=\frac{\sigma}{x}×100\\=\frac{10}{5253}×100\\=\frac{1000}{5253}=0.19\space\text{...(ii)}$$
For firm B,
Number of wages earners = 648
Mean of monthly wages = ₹5253
Variance of distribution of wages = 121
$$\text{Standard deviation}\sigma=\sqrt{\text{Variance}}\\=\sqrt{121}=11$$
Amount paid by firm B = 648 × ₹3403944 …(iii)
$$\text{Coefficient of vairation = }\frac{\sigma}{x}×100\\=\frac{11}{5253}×100\\=\frac{1100}{5253}=0.21\qquad\text{...(iv)}$$
From equation (i) and (ii),
Monthly wages paid by firm A = ₹3078258
and from firm B = ₹3403944
Thus, firm B pays out larger amount as monthly wages
From equation (ii) and (iv),
∵ CV of firm B > CV of firm A as 0.21 > 0.19
∴ Firm B shows greater variability in individual wages.
4. The following is the record of goals scored by team A in a football session:
Number of goal scored | 0 | 1 | 2 | 3 | 4 |
Number of matches | 1 | 9 | 7 | 5 | 3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
Sol.
Number of goals scored | Number of matches | fixi | xi2 | fixi2 |
xi | fi | |||
0 | 1 | 0 | 0 | 0 |
1 | 9 | 9 | 1 | 9 |
2 | 7 | 14 | 4 | 28 |
3 | 5 | 15 | 9 | 45 |
4 | 3 | 12 | 16 | 48 |
Total | Σfi=25 | Σfixi=50 | Σfixi2=130 |
$$\text{Mean}\space\bar x=\frac{\Sigma f_ix_i}{\Sigma f_i}=\frac{50}{25}=2\\\text{Standard deviation}\space\sigma=\sqrt{\frac{\Sigma f_ix_i^2}{\Sigma f_i}-\bigg(\frac{\Sigma f_ix_i}{\Sigma f_i}\bigg)^2}\\=\sqrt{\frac{130}{25}-\bigg(\frac{50}{25}\bigg)^2}\\=\sqrt{\frac{130}{25}-4}\\=\sqrt{\frac{130-100}{25}}=\sqrt{\frac{30}{25}}\\=\frac{1}{5}\sqrt{30}=\frac{5.48}{5}=1.096$$
$$\text{CV for team A = }\frac{\sigma}{x}×100\\=\frac{1.096}{2}×100\\=\frac{109.6}{2}=54.8$$
For team B,
Given, x = 2 and s = 1.25
$$\text{Given\space}\bar x=2\space\text{and}\space\sigma=1.25\\\therefore\space\text{CV for team B =}\frac{\sigma}{x}×100\\=\frac{1.25}{2}×100\\=\frac{125}{2}=62.5$$
∵ CV of team A < CV of team B as 54.8 < 62.5
Hence, team A is more consistent.
5. The sum and sum of squares corresponding to length x (in cm) and weight y (in g) of 50 plant products are given below:
$$\displaystyle\sum_{\textbf{i=1}}^{\textbf{50}}\space \textbf{x}_\textbf{i}\textbf{=212}\space\displaystyle\sum_{\textbf{i=1}}^{\textbf{50}}\space \textbf{x}_\textbf{i}^\textbf{2}\textbf{=902.8}\\\textbf{and}\space\displaystyle\sum_{\textbf{i=1}}^{\textbf{50}}\space \textbf{y}_\textbf{1}\textbf{=261}\space\displaystyle\sum_{\textbf{i=1}}^{\textbf{50}}\space \textbf{y}_\textbf{1}^\textbf{2}\textbf{=1457.6}$$
Which is more varying, the length or weight?
Sol. For length,
$$\text{Mean}\space \bar x=\frac{\Sigma x_i}{n}\space\\=\frac{212}{50}=4.24\\\text{Standard deviation} (\sigma) =\\\sqrt{\frac{\Sigma x_i^2}{n}-\bigg(\frac{\Sigma x_i}{n}\bigg)^2}\\=\sqrt{\frac{902.8}{50}-\bigg(\frac{212}{50}\bigg)^2}\\=\sqrt{\frac{902.8×50-(212)^2}{50×50}}\\=\frac{1}{50}\sqrt{45140-44944}$$
$$=\frac{1}{50}\sqrt{196}=\frac{14}{50}=\frac{14}{50}=0.28\\\therefore\space\text{Coefficient of variation for length }\\=\frac{\sigma}{x}×100=\frac{0.28}{4.24}=6.604\\\text{For weight,}\\\text{Mean}\space\bar y=\frac{\Sigma y_i}{n}=\frac{261}{50}=5.22\\\text{Standard deviation}(\sigma)=\sqrt{\frac{\Sigma y_i^2}{n}-\bigg(\frac{\Sigma y_i}{n}\bigg)^2}\\=\sqrt{\frac{1457.6}{50}-\bigg(\frac{261}{50}\bigg)^2}$$
$$=\frac{1457.6×50-(261)^2}{50×50}\\=\frac{1}{40}\space\sqrt{72880-68121}\\=\frac{1}{50}\sqrt{4759}\\=\frac{1}{50}×68.98=1.37\\\therefore\space\text{CV for weight =}\frac{\sigma}{y}×100\\=\frac{1.37}{5.22}×100\\=\frac{1.37}{5.22}×100=26.24$$
∵ CV of weight (26.24) > CV of length (6.6)
∴ Weight is more varying than length.
Miscellaneous Exercise
1. The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
Sol. Let the remaining two observations are x and y.
Given,
$$\text{Given,\space} \bar x=9\space\text{and}\space\sigma^2=9.25\\\because\space\bar x = 9\\\Rarr\space\frac{\text{Sum of all observations}}{\text{Number of observation}}=9$$
⇒ Sum of all observations = 9 × 8
⇒ 6 + 7 + 10 + 12 + 12 + 13 + x + y = 72
⇒ 60 + x + y = 72
⇒ x + y = 72 – 60 …(i)
⇒ x + y = 12
$$\text{Again,\space}\sigma^2=\frac{\Sigma x_i^2}{n}-\bigg(\frac{\Sigma x_i}{n}\bigg)^2\\\text{or}\space\sigma^2=\frac{\Sigma x_i^2}{n}-(\bar x)^2\\\Rarr \space 9.25=\\\frac{36+49+100+144+144+169+x^2+y^2}{8}\\-(9)^2$$
$$\Rarr\space9.25=\frac{642+x^2+y^2}{8}-81\\\Rarr\space 9.25+81=\frac{642+x^2+y^2}{8} $$
⇒ 74 + 648 = 642 + x2 + y2
⇒ 722 = 642 + x2 + y2
⇒ 722 – 642 = x2 + y2
⇒ x2 + y2 = 80 …(ii)
Now, put equation (i) put y = 12 – x in equation (ii),
x2 + (12 – x)2 = 80
⇒ x2 + 144 + x2 – 24x = 80
⇒ 2x2 – 24x + 144 – 80 = 0
2x2 – 24x + 64 = 0
⇒ x2 – 12x + 31 = 0
⇒ x2 – 8x – 4x + 32 = 0
⇒ x(x – 8) – 4(x – 8) = 0
⇒ (x – 4) (x – 8) = 0
⇒ x – 4 = 0 or x = 4
x – 8 = 0, x = 4
Put x = 4 and 8 in equation (i)
Then y = 8 and 4
Hence, observations are 4 and 8.
2. The mean and variance of 7 observations are 8 and 16, respectively. If five of the observation are 2, 4, 10, 12, 14. Find the remaining two observations.
Sol. Let the remaining two observations are x and y.
$$\text{Given\space} \bar x=8\space\text{and}\space\sigma^2=8\\\bar x=8$$
$$\frac{\text{Sum of all observations}}{\text{Number of observations}}=8\\\Rarr\space\frac{2+4+10+12+14+x+y}{7}=8$$
⇒ 42 + x + y = 56
⇒ x + y = 14 …(i)
$$\text{Again}\space \sigma^2=\frac{x_i^2}{n}-\bigg(\frac{\Sigma x_i}{n}\bigg)^2\\\Rarr\space \sigma^2=\frac{\Sigma x_i^2}{n}-(\bar{x})^2\\\Rarr\\\space 16=\frac{4+16+100+144+196+x^2+y^2}{n}-(8)^2\\\Rarr\space 16+64=\frac{460+x^2+y^2}{7}$$
⇒ 7 × (80) = 460 + x2 + y2
⇒ x2 + y2 = 560 – 460
⇒ x2 + y2 = 100 …(ii)
Now, from equation (i), putting y = 14 – x in equation (ii),
x2 + (14 – x2) = 100
⇒ x2 + 196 + x2 – 28x = 100
⇒ 2x2 – 28x + 196 – 100 = 0
⇒ 2x2 – 28x + 96 = 0
⇒ x2 – 14x + 48 = 0
⇒ x2 – 8x – 6x + 48 = 0
⇒ a(x – 8) – 6(x – 8) = 0
⇒ (x – 8) (x – 6) = 0
x – 8 = 0, x = 8
x – 6 = 0, x = 6
Put the value x cm in equation (i)
y = 6 and y = 8
Hence, the observations are 8 and 6.
3. The mean and standard deviation of six obseravtions are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
Sol. Given,
$$\bar x=8\space\text{and}\space \sigma^2=4\space\text{and n=6}\\\text{Let the observation are}\\\space\bar x_1,\bar x_2,\bar x_3,\bar x_4,\bar x_5,\bar x_6\\\text{Then,}\\\text{Mean}\space\bar x=8\space\text{(Given)}\\\text{i.e.,}\space\text{Mean}=\frac{\bar x_1+\bar x_2+\bar x_3+\bar x_4+\bar x_5+\bar x_6}{6}=8$$
$$\Rarr\space \bar x_1,\bar x_2,\bar x_3,\bar x_4,\bar x_5,\bar x_6=48$$
Now, if and each observation is multiplied by 3, then mean is
$$3\bar x_1+3\bar x_2+3\bar x_3+3\bar x_4+3\bar x_5+\bar x_6\\=48×3$$
⇒ Σxi = 144
$$\text{Now,}\space\text{new mean}\space\bar x=\frac{144}{6}=24$$
Since, Variance = 42 (Given)
$$\text{i.e}\space\frac{\Sigma x_i^2}{n}-\bigg(\frac{\Sigma x_i}{n}\bigg)^2=4^2\\\Rarr\space\frac{\Sigma x_i^2}{6}-(8)^2=4^2\\\Rarr\space\frac{\Sigma x^2}{6}=16+64$$
⇒ Σx2 = 80 × 6
⇒ Σx2 = 480 …(i)
$$\text{Now,}\qquad\text{New}\\\space\Sigma x^2=(3\bar x_1)^2+(3 \bar x_2)^2+(3 \bar x_3)^2+(3\bar x_4)^2+\\(3\bar x_5)^2+(3\bar x_6)$$
$$= 9(\bar x_1^2+\bar x_2^2+\bar x_3^2+\bar x_4^2+\bar x_5^2+\bar x_6^2)$$
= 9 × 480 [From equation (i)]
New Σx2 = 4320
$$\therefore\space\text{New variance =}\space\frac{\text{(New)}\Sigma x^2}{n}-(\text{New mean})^2\\=\frac{4320}{6}-(24)^2$$
= 720 – 576 = 144
$$\therefore\space\text{New standard deviation }\\= \sqrt{\text{New variance}}\\\sqrt{144}$$
= 12.
$$\bigg[\because\space \sigma^2=\frac{\Sigma(x_i-\bar x)^2}{n}\bigg]$$
5. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted.
(ii) If it is replaced by 12.
Sol. (i) If wrong item is omitted.
$$\text{Given,}\space \bar x=10\space\text{and}\space\sigma=2,n=20\\\Rarr\space\frac{\Sigma x_i}{20}=10$$
⇒ Σxi = 20 × 10
⇒ Σxi = 200
If observation 8 is omitted, then
$$\Sigma x_i=200-8-192$$
Now, remaining number of observation = 19
$$\Rarr\space\text{Correct mean =}\frac{\Sigma x_i}{n}=\frac{192}{19}=10.10$$
Again, σ = 2
⇒ σ2 = 4
$$\Rarr\space\frac{\Sigma x_i^2}{n}-(\bar x)^2=4\\\Rarr\space \frac{\Sigma x_i^2}{20}-(10)^2=4$$
⇒ Σxi2 = (4 + 100) × 20 = 104 × 20 = 2080
If observation 8 is omitted, then
Σxi2 = 2080 – 64 = 2016
$$\text{Now, correct standard deviation}\space\sigma=\\\sqrt{\frac{2016}{19}-\bigg(\frac{192}{19}\bigg)^2}\\=\sqrt{\frac{2016×19-(192)^2}{19×19}}\\=\frac{1}{19}\sqrt{38304-36864}\\=\frac{1}{19}\sqrt{1440}=\frac{3795}{19}=1.99$$
(ii) If it is placed by 12.
$$\bar x=10,\sigma=2, n=20\\\Rarr\space\frac{\Sigma x}{20}=10\\\Rarr\space\Sigma x=200 $$
If observation 8 is replaced by 12, then
Σx = 200 – 8 + 12 = 192 + 12 = 204
$$\text{Correct mean =}\frac{204}{20}\\=\frac{102}{10}=10.2$$
Again, σ = 2
⇒ σ2 = 4
$$\Rarr\space\frac{\Sigma x^2}{n}-(\bar x)^2=4\\\Rarr\space \frac{\Sigma x^2}{20}-(10)^2=4$$
Σx2 = 2080
If observation 8 is replaced by 12, then
Σx2 = 2080 – (8)2 + (12)2
= 2080 – 64 + 144
= 2224 –64
= 2160
$$\text{Now, correct standard deviation}\space\sigma=\\\sqrt{\frac{\Sigma x^2}{n}-(\bar x)^2}\\=\sqrt{\frac{2160}{20}-\bigg(\frac{204}{20}\bigg)^2}\\=\sqrt{\frac{2160×20-(204)^2}{20×20}}\\=\frac{1}{20}\sqrt{43200-41616}\\=\frac{1}{20}\sqrt{1584}=\frac{39.79}{20}=1.98$$
6. The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean Standard Deviation | 42 | 32 | 40.9 |
12 | 15 | 20 |
Which of these three subjects shows the highest variability in marks and which shows the lowest?
Sol. Here, n = 50
For mathematics,
$$\text{Coefficient of variation (CV) =}\frac{\sigma}{x}×100\\=\frac{12}{42}×100=\frac{1200}{42}=\frac{200}{7}\\\text{=28.57}\\\text{For Physics,}\space\text{CV}=\frac{\sigma}{x}×100\\=\frac{15}{32}×100\\=\frac{1500}{32}=46.87\space\text{...(ii)}$$
For Chemistry, CV =
$$\text{For Chemistry, CV = }\frac{\sigma}{x}×100\\=\frac{20}{40.9}×100=\frac{2000}{40.9}$$
= 48.89
…(iii)
From equations (i), (ii) and (iii), w e have
∵ CV of Chemistry > CV of Physcis > CV of Mathematics
∴ Chemistry shows the highest variability and Mathematics shows the lowest variability.
7. The mean and standard deviatoin of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation, if the incorrect observation and omitted.
$$\textbf{Sol.}\space\text{Given}\space n=100,\bar x=20,\sigma=3\\\because\space\bar x=3\\\Rarr\space\frac{\Sigma x}{100}=20$$
⇒ Σxi = 100 × 20
⇒ Σx = 2000
Now, incorrect observations 21, 21 and 18 are omitted, then correct sum is
Σxi = 2000 – 21 – 21 – 18 = 2000 – 60
= 1940
Now, correct mean of remaining 97 observations is
$$\bar x=\frac{1940}{97}=20$$
Again , σ = 3
$$\Rarr\space\sqrt{\frac{\Sigma x_i^2}{n}-(\bar x)^2}=3\\\Rarr\space \frac{\Sigma x_i^2}{100}-(20)^2=9\\\Rarr\space\frac{\Sigma x^2}{100}=9+400$$
= 409 × 100 = 40900
Now, correct Σx2 is Σx2 = 40900 – (21)2 – (21)2 – (18)2
= 40900 – 441 – 441 – 324
= 40900 – 1206 = 39694
Now, correct SD for remaining 97 observations is
$$\sigma=\sqrt{\frac{39694}{97}-\bigg(\frac{1940}{97}\bigg)^2}\\\sqrt{409.2-(20)^2}\\=\sqrt{409.2-400}\\\sqrt{9.2}=3.03$$