NCERT Solutions for Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 4 Free PDF Download

Please Click on Free PDF Download link to Download the NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

    Fields marked with a are mandatory, so please fill them in carefully.
    To download the PDF file, kindly fill out and submit the form below.

    Exercise 5.1

    Express each of the complex number given in the Exercises 1 to 10 in the form a + ib:

    $$\textbf{1. (5i)}\bigg(\frac{\textbf{-3}}{\textbf{5}}\textbf{i}\bigg).\\\textbf{Sol.}\space(5i)×\bigg(\frac{-3}{5}i\bigg)=\frac{5}{5}i×i×(-3)$$

    = i2 × (– 3)

    = – 3 × (– 1) [∵ i2 = – 1]

    = 3

    $$\text{Hence,}\space(5i)\bigg(\frac{-3}{5}i\bigg)=3+i0.$$

    2. i9 + i19.

    Sol. i9 + i19 = [(i2)4 × i] + [(i2)9 × i]

    = (– 1)4 × i + (– 1)9 × i [∵ i2 = – 1]

    = 1 × i + (– 1) × i

    = i – i

    = 0

    Hence, i9 + i19 = 0 + i0.

    3. i– 39.

    $$\textbf{Sol.}\space i^{\normalsize-39}=\frac{1}{i^{39}}=\frac{1}{(i^{4})^{9}i^{3}}\\=\frac{1}{(1)^{9}×i^{3}}\space\begin{bmatrix}\because\space i^{2}=-1\\\therefore\space i^{4}=1\\\text{and}\space i^{3}=-i\end{bmatrix}\\=\frac{1}{-i}$$

    Now, multiplying the numerator and denominator by i, we get

    $$=\frac{i}{-i×1}=\frac{i}{-i^{2}}=\frac{i}{-(-1)}\\=\frac{i}{1}$$

    = i

    Hence, i– 39 = 0 + i

    4. 3(7 + i7) + i(7 + i7).

    Sol. 3(7 + i7) + i(7 + i7) = 21 + 21i + 7i + 7i2

    = 21 + 28i – 7 [·.· i2 = – 1]

    = 14 + 28i

    5. (1 – i) – (– 1 + 6i).

    Sol. (1 – i) – (– 1 + i6) = 1 – i + 1 – 6i

    = 2 – i7.

    $$\textbf{6.\space}\bigg(\frac{\textbf{1}}{\textbf{5}}+i\frac{\textbf{2}}{\textbf{5}}\bigg)-\bigg(\textbf{4}+i\frac{\textbf{5}}{\textbf{2}}\bigg)\\\textbf{Sol.}\space\bigg(\frac{1}{5}+\frac{2}{5}i\bigg)-\bigg(4+\frac{5}{2}i\bigg)\\=\frac{1}{5}+\frac{2}{5}i-4-\frac{5}{2}i\\=\bigg(\frac{1}{5}-4\bigg)+i\bigg(\frac{2}{5}+\frac{5}{2}\bigg)\\=\bigg(\frac{1-20}{5}\bigg)+i\bigg(\frac{4-25}{10}\bigg)\\=\bigg(\frac{-19}{5}\bigg)+i\bigg(\frac{-21}{10}\bigg)\\=\frac{-19}{5}=\frac{i21}{10}.$$

    $$\textbf{7.}\bigg[\bigg(\frac{\textbf{1}}{\textbf{3}}+\textbf{i}\frac{\textbf{7}}{\textbf{3}}\bigg)+\bigg(\textbf{4}+\textbf{i}\frac{\textbf{1}}{\textbf{3}}\bigg)\bigg]\\-\bigg(\frac{\textbf{-4}}{\textbf{3}}+\textbf{i}\bigg).\\\textbf{Sol.}\bigg[\bigg(\frac{1}{3}+\frac{7}{3}i\bigg)+\bigg(4+\frac{1}{3}i\bigg)\bigg]\\-\bigg(\frac{-4}{3}+i\bigg).\\=\frac{1}{3}+\frac{7}{3}i+4+\frac{1}{3}i+\frac{4}{3}-i\\=\bigg(\frac{1}{3}+4+\frac{4}{3}\bigg)+i\bigg(\frac{7}{3}+\frac{1}{3}-1\bigg)\\=\bigg(\frac{1+12+4}{3}\bigg)+i\bigg(\frac{7+1-3}{3}\bigg)$$

    $$=\frac{17}{3}+i\frac{5}{3}.$$

    8. (1 – i)4.

    Sol. (1 – i)4 = [(1 – i)2]2

    = [1 + i2 – 2i]2

    [∵ (a – b)2 = a2 + b2 – 2ab]

    = [1 – 1 – 2i]2 [∵ i2 = – 1]

    = [– 2i]2

    = (– 2)2 (i)2

    = 4(– 1)  [∵ i2 = – 1]

    = – 4

    Hence, (1 – i)4 = – 4 + i0.

    $$\textbf{9.}\space\bigg(\frac{\textbf{1}}{\textbf{3}}+\textbf{3i}\bigg)^{\textbf{3}}.\\\textbf{Sol.}\bigg(\frac{1}{3}+3i\bigg)^{3}=\\\bigg(\frac{1}{3}\bigg)^{3}+(3i)^{3}+3\bigg(\frac{1}{3}\bigg)(3i)\bigg(\frac{1}{3}+3i\bigg)$$

    [∵ (a + b)3 = a3 + b3 + 3ab(a + b)]

    $$=\frac{1}{27}+27i^{3}+3i\bigg(\frac{1}{3}+3i\bigg)\\=\frac{1}{27}+27(-i)+i+9i^{2}\\\lbrack\because i^{3}=-i\rbrack\\=\frac{1}{27}-27i+i-9\\\lbrack\because\space i^{2}=-1\rbrack\\=\bigg(\frac{1}{27}-9\bigg)+i(-27+1)\\=\bigg(\frac{1-243}{27}\bigg)+i(-26)\\=\frac{-242}{27}-i26.$$

    $$\textbf{10.}\space\bigg(\textbf{-2-}\frac{\textbf{1}}{\textbf{3}}i\bigg)^{\textbf{3}}.\\\textbf{Sol.}\space\bigg(-2-\frac{1}{3}i\bigg)^{3}=(-1)^{3}\bigg(2+\frac{1}{3}i\bigg)^{3}\\=(-1)^{3}\bigg[2^{3}+\bigg(\frac{i}{3}\bigg)^{3}+3(2)\bigg(\frac{i}{3}\bigg)\bigg(2+\frac{i}{3}\bigg)\bigg]$$

    [∵ (a + b)3 = a3 + b3 + 3ab(a + b)]

    $$=-1\bigg[8+\frac{i^{3}}{27}+2i\bigg(2+\frac{i}{3}\bigg)\bigg]\\=-\bigg[8-\frac{1}{27}+4i+\frac{2i^{2}}{3}\bigg]\\\lbrack\because i^{3}=-1\rbrack\\=-\bigg[8-\frac{i}{27}+4i-\frac{2}{3}\bigg]\\\lbrack\because\space i^{2}=-1\rbrack\\=-\bigg[\bigg(8-\frac{2}{3}\bigg)+i\bigg(\frac{-1}{27}+4\bigg)\bigg]\\=-\bigg[\bigg(\frac{24-2}{3}\bigg)+i\bigg(\frac{-1+108}{27}\bigg)\bigg]\\=-\bigg[\frac{22}{3}+\frac{107}{27}i\bigg]$$

    $$=\frac{-22}{3}-i\frac{107}{27}.$$

    Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.

    11. 4 – 3i.

    Sol. Let, z = 4 – 3i

    ∴  | z |2 = 42 + (– 3)2

    = 16 + 9 = 25

    and z = 4 + 3i

    So, multiplicative inverse of 4 – 3i is given by

    $$z^{\normalsize-1}=\frac{z}{|z|^{2}}\\=\frac{4+3i}{25}\\=\frac{4}{25}+\frac{3}{25}i.$$

    $$\textbf{12.}\space\sqrt{\textbf{5}}\textbf{+3i}.\\\textbf{Sol.}\space\text{Let}\space z=\sqrt{5}+3i\\\therefore\space|z|^{2}=(\sqrt{5})^{2}+3^{2}$$

    $$\text{and}\space\bar z=\sqrt{5}-3i\\\text{So, multiplicative inverse of}\space\sqrt{3}+3i\\\text{is given by}\\z^{\normalsize-1}=\frac{\bar z}{|z|^{2}}\\=\frac{\sqrt{5}-3i}{14}\\=\frac{\sqrt{5}}{14}-\frac{3}{14}i.$$

    13. – i.

    Sol. Let, z = – i

    ∴ | z |2 = (0)2 + (– 1)2 = 1

    $$\text{and}\space\bar{z} = i$$

    So, multiplicative inverse of (– i) is given by

    $$z^{\normalsize-1}=\frac{\bar{z}}{|z|^{2}}\\=\frac{i}{1}=i.$$

    14. Express the following expression in the terms of a + ib:

    $$\frac{(\textbf{3+i}\sqrt{\textbf{5}})(\textbf{3-i}\sqrt{\textbf{5}})}{(\sqrt{\textbf{3}}+\sqrt{\textbf{2}}\textbf{i})-(\sqrt{\textbf{3}}-\textbf{i}\sqrt{\textbf{2}})}.$$

    $$\textbf{Sol.}\space\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-i\sqrt{2})}\\=\frac{(3)^{2}-(i\sqrt{5})^{2}}{\sqrt{3}+\sqrt{2}i-\sqrt{3}+i\sqrt{2}}$$

    [∵ (a + b) (a – b) = a2 – b2]

    $$=\frac{9-5i^{2}}{2\sqrt{2}i}\\=\frac{9-5(-1)}{2\sqrt{2}i}\space[\because i^{2}=1]\\=\frac{14}{2\sqrt{2}i}$$

    Now, multiplying numerator and denominator by i

    $$=\frac{14i}{2\sqrt{2}i×i}\\=\frac{14i}{2\sqrt{2}i^{2}}\\=\frac{14i}{2\sqrt{2}(\normalsize-1)}\space[\because i^{2}=-1]\\=\frac{-14i}{2\sqrt{2}}=\frac{-7i}{\sqrt{2}}$$

    Now, multiplying numerator and denominator by 

    $$\text{Now, multiplying numerator and}\\ \text{denominator by}\space\sqrt{2}\\=\frac{-7i}{\sqrt{2}}×\frac{\sqrt{2}}{\sqrt{2}}\\=\frac{-7\sqrt{2}i}{2}\\\text{Hence}\frac{(3+\sqrt{5}i)(3-\sqrt{5}i)}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-\sqrt{2}i)}\\=0+i\bigg(\frac{-7\sqrt{2}}{2}\bigg).$$

    Exercise 5.2

    Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2:

    $$\textbf{1.}\space \textbf{z\space= -1-i}\sqrt{\textbf{3}}.\\\textbf{Sol.}\space\text{Given}\space z=-1-i\sqrt{3}$$

    Let, r cos θ = – 1

    $$\text{and}\space r\text{sin}\space\theta=-\sqrt{3}$$

    On squaring and adding both, we get

    (r cos θ)2 + (r sin θ)2 = (-1)2+($$-\sqrt{3})2$$

    ⇒ r2 (cos2 θ + sin2 θ) = 1 + 3

    (∵ cos2 θ + sin2 θ = 1)

    ⇒ r2 = 4 (r > 0)

    ⇒ r = 2 (·.· r > 0)

    Thus, modulus = 2

    So, we have

    $$\text{2 cos}\space\theta = – \text{1 and 2 sin}\space\theta =-\sqrt{3}\\\Rarr\space\text{cos}\space\theta=\frac{\normalsize-1}{2}\text{and sin}\space\theta =\frac{-\sqrt{3}}{2}$$

    As the values of both sin  θ and cos  θ are negative,  θ lies in III quadrant.

    $$\text{Argument = -}\bigg(\pi-\frac{\pi}{3}\bigg)\\=\frac{-2\pi}{3}$$

    Thus, the modulus and argument of the complex number $$-1-\sqrt{3}i\space\text{are 2 and}\frac{-2\pi}{3}\\\text{respectively.}$$ 

    $$\textbf{2. z =}-\sqrt{\textbf{3}}+\textbf{i}.\\\textbf{Sol.}\space \text{Given, z = -}\sqrt{3}+i\\\text{Let, r cos}\space\theta=-\sqrt{3}\space\text{and}\text{r sin}\space\theta=1$$

    On squaring and adding both, we get

    $$r^{2}(\text{cos}^{2}\theta)+r^{2}(\text{sin}^{2}\theta)\\=(-\sqrt{3})^{2}+(1)^{2}\\\Rarr\space r^{2}(\text{cos}^{2}\theta + sin^{2}\theta)\\=(-\sqrt{3})^{2}+(1)^{2}$$

    ⇒ r2 (1) = 3 + 1 (∵ cos2 θ + sin2 θ = 1)

    ⇒ r2 = 4

    ⇒ r = 2 (∵ r > 0)

    Thus modulus = 2

    $$\text{So, \space2 cos θ =}-\sqrt{3}\\\text{and 2 sin θ = 1}\\\Rarr\space\text{cos}\space\theta=\frac{-\sqrt{3}}{2}\text{and sin}\theta=\frac{1}{2}\\\therefore\space\theta=\pi=\frac{\pi}{6}=\frac{5\pi}{6}$$

    [As θ lies in the II quadrant]

    Thus, the modulus and argument of the complex number $$-\sqrt{3}+i\space\text{are 2 and}\space\frac{5\pi}{6}\text{respectively.}$$

    Convert each of the complex numbers given in Exercises 3 to 8 in the polar form.

    3. 1 – i.

    Sol. Let, z = 1 – i

    So, r cos θ = 1 and r sin θ = – 1

    On squaring and adding both, we get

    r2 cos2 θ + r2 sin2 θ = 12 + (– 1)2

    ⇒ r2 (cos2 θ + sin2 θ) = 1 + 1

    (∵ cos2 θ + sin2 θ = 1)

    ⇒ r2 = 2

    $$\Rarr\space r=\sqrt{2}\space(\because r>0)\\\text{So,\space}\sqrt{2}\space\text{cos}\space\theta=1\text{and}\\\sqrt{2}\space\text{sin}\space\theta=-1\\\Rarr\space\text{cos}\space\theta=\frac{1}{\sqrt{2}}\\\text{and sin}\space\theta=\frac{\normalsize-1}{\sqrt{2}}\\\therefore\space\theta=\frac{-\pi}{4}$$

    [As  θ lies in the IV quadrant]

    So, in polar form

    1 – i = r cos  θ + ir sin  θ

    $$=\sqrt{2}\text{cos}\bigg(\frac{-\pi}{4}\bigg)+i\sqrt{2}\text{sin}\bigg(\frac{-\pi}{4}\bigg)\\=\sqrt{2}\bigg[\text{cos}\bigg(\frac{-\pi}{4}\bigg)+i\space\text{sin}\bigg(\frac{-\pi}{4}\bigg)\bigg]$$

    4. – 1 + i.

    Sol. Let, z = – 1 + i

    So, r cos θ = – 1 and r sin θ = 1

    On squaring and adding both, we get

    r2 cos2 θ + r2 sin2 θ = (– 1)2 + 1

    ⇒ r2 (cos2 θ + sin2 θ) = 1 + 1

    ⇒ r2 (1) = 2 (·.· cos2 θ + sin2 θ = 1)

    ⇒ r2 = 2

    $$\Rarr\space \text{r}=\sqrt{2}\space(\because r\gt0)\\\text{So,}\space\sqrt{2}\space\text{cos}\space\theta=-1\space\text{and}\sqrt{2}\text{sin}\space\theta=1\\\text{cos}\space\theta=\frac{\normalsize-1}{\sqrt{2}}\space\text{and sin}\space\theta=\frac{1}{\sqrt{2}}\\\theta=\pi-\frac{\pi}{4}=\frac{3\pi}{4}$$

    [As θ lies in the II quadrant]

    So, in polar form

    – 1 + i = r cos θ + ir sin θ

    $$=\sqrt{2}\space\text{cos}\bigg(\frac{3\pi}{4}\bigg)+i\sqrt{2}\space\text{sin}\bigg(\frac{3\pi}{4}\bigg)\\=\sqrt{2}\bigg[\text{cos}\bigg(\frac{3\pi}{4}\bigg)+ i\space\text{sin}\bigg(\frac{3\pi}{4}\bigg)\bigg]$$

    5. – 1 – i.

    Sol. Let z = – 1 – i

    So, r cos θ = – 1 and r sin θ = – 1

    On squaring and adding both, we get

    r2 cos2 θ + r2 sin2 θ = (– 1)2 + (– 1)2

    ⇒ r2 (cos2 θ + sin2 θ) = 1 + 1

    ⇒ r2 = 2 (∵ cos2 θ + sin2 θ = 1)

    (∵ r > 0)

    $$r=\sqrt{2}\\\text{So,}\space\sqrt{2}\space\text{cos}\space\theta=-1\space\text{and}\\\sqrt{2}\space\text{sin}\space\theta=-1\\\Rarr\space\text{cos}\space\theta=\frac{\normalsize-1}{\sqrt{2}}\text{and sin}\space\theta=\frac{\normalsize-1}{\sqrt{2}}\\\text{Therefore,}\space\theta=-\bigg(\pi-\frac{\pi}{4}\bigg)=\frac{-3\pi}{4}$$

    (As θ lies in the III quadrant)

    Hence, in polar form

    – 1 – i = r cos θ + ir sin θ

    $$=\sqrt{2}\space\text{cos}\bigg(\frac{-3\pi}{4}\bigg)+i\sqrt{2}\space\text{sin}\bigg(\frac{-3\pi}{4}\bigg)\\=\sqrt{2}\bigg[\text{cos}\bigg(\frac{3\pi}{4}\bigg)+ i\space\text{sin}\bigg(\frac{3\pi}{4}\bigg)\bigg]$$

    6. – 3.

    Sol. Let z = – 3 = – 3 + 0i

    So, r cos θ = – 3 and r sin θ = 0

    On squaring and adding both, we get

    r2 cos2 θ + r2 sin2 θ = (– 3)2 + 02

    ⇒ r2 (cos2 θ + sin2 θ) = 9

    ⇒ r2 = 9    (∵ cos2 θ + sin2 θ = 1)

    ⇒ r = 3     (∵ r > 0)

    So,  3 cos θ = – 3 and 3 sin θ = 0

    cos θ = – 1 and sin θ = 0

    Therefore,  θ = π

    So, In polar form

    – 3 = r cos θ + ir sin θ

    = 3 cos π + i3 sin π

    = 3(cos π + i sin π)

    $$\textbf{7.\space}\sqrt{\textbf{3}}\textbf{+i.}\\\textbf{Sol.}\space\text{Let} z=\sqrt{3}+i\\\text{So,\space r cos}\space\theta=\sqrt{3}\space\text{and r sin q = 1}$$

    On squaring and adding both, we get

    $$\text{r}^{2}\text{cos}^{2}\theta\space+\space r^{2}\text{sin}^{2}\theta=\sqrt{3 ^{2}+1^{2}}$$

    ⇒ r2 (cos2 θ + sin2 θ) = 3 + 1

     (∵ cos2 θ + sin2 θ = 1)

    ⇒ r2 = 4  (∵ r > 0)

    ⇒ r = 2

    $$\text{So,}\space\text{2 cos}\space\theta=\sqrt{3}\space\text{and 2 sin}\space\theta = 1\\\Rarr\space\text{cos}\space\theta=\frac{\sqrt{3}}{2}\text{and sin}\space\theta =\frac{1}{2}\\\text{Therefore,}\space\theta=\frac{\pi}{6}\space\text{(As q lies in I quadrant)}$$

    Hence, in polar form

    $$\sqrt{3}+i=\text{r cos}\space\theta+i\space\text{sin}\space\theta\\=\text{2 cos}\bigg(\frac{\pi}{6}\bigg)+2i\space\text{sin}\bigg(\frac{\pi}{6}\bigg)\\=2\bigg[\text{cos}\bigg(\frac{\pi}{6}\bigg)+i\space \text{sin}\bigg(\frac{\pi}{6}\bigg)\bigg]$$

    8. i.

    Sol. Let, z = i = 0 + i

    So, r cos  θ = 0 and r sin  θ = 1

    On squaring and adding both, we get

    r2 cos2  θ + r2 sin2  θ = (0)2 + (1)2

    ⇒ r2 (cos2  θ + sin2  θ) = 1

    (∵ cos2  θ + sin2  θ = 1)

    ⇒ r2 = 1

    $$\Rarr\space r=\sqrt{1}=1$$

    (∵ r > 0)

    So, 1 cos θ = 0 and 1 sin θ = 1

    ⇒ cos θ = 0 and sin θ = 1

    $$\text{Therefore,}\space\theta=\frac{\pi}{2}$$

    Hence, in ploar form

    i = r cos θ + ri sin θ

    $$=\text{cos}\frac{\pi}{2}+i\space\text{sin}\frac{\pi}{2}.$$

    Exercise 5.3

    Solve each of the following equations:

    1. x2 + 3 = 0.

    Sol. x2 + 3 = 0
    On comparing it with ax2 + bx + c = 0, we get

    a = 1, b = 0 and c = 3

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    ⇒ D = 02 – 4 × 1 × 3 = – 12

    Hence, the required solution are:

    $$x=\frac{-b\pm\sqrt{D}}{2a}\\=\pm\frac{\sqrt{-12}}{2×1}\\=\pm\frac{\sqrt{12}}{2}i\space[\because\space\sqrt{-1}=i]\\\therefore\space x=\pm\frac{2\sqrt{3}}{2}i\\\Rarr\space x=\pm\sqrt{3i}$$

    2. 2x2 + x + 1 = 0.

    Sol. 2x2 + x + 1 = 0

    On comparing it with ax2 + bx + c = 0, we get

    a = 2, b = 1 and c = 1

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    ⇒ D = 12 – 4 × 2 × 1 = 1 – 8 = – 7

    Hence, the required solutions are: 


    $$x=\frac{-b\pm\sqrt{D}}{2a}\\=\frac{-1\pm\sqrt{-7}}{2×2}=\frac{-1+\sqrt{7}i}{4}\\(\because\sqrt{-1}=i)\\x=\frac{\normalsize-1}{4}\pm\frac{\sqrt{7}}{4}i.$$

    3. x2 + 3x + 9 = 0.

    Sol. x2 + 3x + 9 = 0

    On comparing it with ax2 + bx + c = 0, we get

    a = 1, b = 3 and c = 9

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    D = 32 – 4 × 1 × 9

    = 9 – 36 = – 27

    Hence, the required solutions are:

    $$x=\frac{-b\pm\sqrt{D}}{2a}\\=\frac{-3\pm\sqrt{-27}}{2×1}\\=\frac{-3\pm\sqrt{-3×3×3}}{2×1}\\=\frac{-3\pm3\sqrt[]{-3}}{2}\\=\frac{-3\pm3\sqrt{3}i}{2}\\\lbrack\because\space\sqrt{-1}=i\rbrack\\x=\frac{-3}{2}\pm\frac{3\sqrt{3i}}{2}.$$

    4. – x2 + x – 2 = 0.

    Sol. – x2 + x – 2 = 0

    On comparing it with ax2 + bx + c = 0, we get

    a = – 1, b = 1 and c = – 2

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    D = (1)2 – 4 × (– 1) × (– 2)

    = 1 – 8 = – 7

    Hence, the required solutions are:

    $$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{-1\pm\sqrt{-7}}{2×(\normalsize-1)}\\=\frac{-1\pm\sqrt{7}i}{-2}\bigg[\because\space\sqrt{-1}=i\bigg]\\\Rarr\space x=\frac{1}{2}\pm\frac{\sqrt{7}}{-2}i\\\Rarr\space x=\frac{1}{2}\pm\frac{\sqrt{7}}{-2}i.$$

    5. x2 + 3x + 5 = 0.

    Sol.  x2 + 3x + 5 = 0

    On comparing it with ax2 + bx + c = 0, we get

    a = 1, b = 3 and c = 5

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    ⇒ D = 32 – 4 × 1 × 5

    = 9 – 20 = – 11

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{-3\pm\sqrt{-11}}{2×1}\\=\frac{-3\pm\sqrt{-11i}}{2}[\because\space\sqrt{-1}=i]\\x=\frac{-3}{2}\pm\frac{\sqrt{11}}{2}i.$$

    6. x2 – x + 2 = 0.

    Sol. x2 – x + 2 = 0

    On comparing it with ax2 + bx + c = 0, we have

    a = 1, b = – 1 and c = 2

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    ⇒ D = (– 1)2 – 4 × 1 × 2 = 1 – 8 = – 7

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{-(-1)\pm\sqrt{-7}}{2}\\=\frac{1\pm\sqrt{7i}}{2}[\because\space\sqrt{-1}=i]\\x=\frac{1}{2}\pm\frac{\sqrt{7}}{2}i.$$

    $$\textbf{7.}\sqrt{\textbf{2x} ^{2}}+\textbf{x}+\sqrt{\textbf{2}}\textbf{= 0.}\\\textbf{Sol.}\space\sqrt{2}x^{2}+x+\sqrt{2}=0$$

    On comparing it with ax2 + bx + c = 0, we get

    $$a=\sqrt{2}, b=1\text{and c}=\sqrt{2}$$

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    $$\Rarr\space\text{D = (1)}^{2}-4×\sqrt{2}×\sqrt{2}\\=1-8=-7$$

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{-1\pm\sqrt{-7}}{2\sqrt{2}}\\=\frac{-1\pm\sqrt{7}i}{2\sqrt{2}}\space[\because\sqrt{-1}=i]\\\Rarr\space x=\frac{-1}{2\sqrt{2}}\pm\frac{\sqrt{7}}{2\sqrt{2}}i.$$

    $$\textbf{8.\space}\sqrt{\textbf{3}}\textbf{x}^{\textbf{2}}-\sqrt{\textbf{2}}\textbf{x+3}\sqrt{\textbf{3}}\textbf{=0.}\\\textbf{Sol.}\space\sqrt{3}x^{2}-\sqrt{2x}+3\sqrt{3}=0$$

    On comparing it with ax2 + bx + c = 0,

    $$\text{we get}\space a=\sqrt{3}, b=\sqrt{2},\text{and c}=3\sqrt{3}$$

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    $$\Rarr\space\text{D}=(-\sqrt{2})^{2}-4×\sqrt{3}×3\sqrt{3}$$

    = 2 – 36 = – 34

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{-(-2)\pm\sqrt{-34}}{2×\sqrt{3}}\\=\frac{\sqrt{2}\pm\sqrt{34}i}{2\sqrt{3}}\space[\because\space\sqrt{-1}=i]\\\Rarr\space x=\frac{\sqrt{2}}{2\sqrt{3}}\pm\frac{\sqrt{34}}{2\sqrt{3}}i.$$

    $$\textbf{9. x}^{\textbf{2}}\textbf{+x+}\frac{\textbf{1}}{\sqrt{\textbf{2}}}\textbf{=0.}\\\textbf{Sol.}\space x^{2}+x+\frac{1}{\sqrt{2}}=0\\\Rarr\space\sqrt{2}x^{2}+\sqrt{2}x+1=0$$

    On comparing it with ax2 + bx + c, we have

    $$a=\sqrt{2},b=\sqrt{2}\text{and c = 1}$$

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    $$\Rarr\space D=(\sqrt{2})^{2}-4×\sqrt{2}×1\\=2-4\sqrt{2}=2(1-2\sqrt{2})$$

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{\sqrt{2}\pm\sqrt{2(1-2\sqrt{2})}}{2\sqrt{2}}\\=\frac{-\sqrt{2}\pm\sqrt{2}(\sqrt{(2\sqrt{2}-1)})i}{2\sqrt{2}}\\=x=\frac{-1\pm(\sqrt{2\sqrt{2}-1})i}{2}.$$

    $$\textbf{10. x}^\textbf{2}+\frac{\textbf{x}}{\sqrt{\textbf{2}}}\textbf{+1=0}\\\textbf{Sol.}\space x^{2}+\frac{x}{\sqrt{2}}+1=0\\\Rarr\space\sqrt{2}x^{2}+x+\sqrt{2}=0$$

    On comparing it with ax2 + bx + c = 0, we get,

    $$a=\sqrt{2},b=1\text{and c}=\sqrt{2}$$

    Therefore, the discriminant of the given equation is

    D = b2 – 4ac

    $$\Rarr\space\text{D}=(1)^{2}-4×\sqrt{2}×\sqrt{2}$$

    = 1 – 8 = – 7

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{-1\pm\sqrt{-7}}{2\sqrt{2}}\\\Rarr\space x=\frac{-1}{2\sqrt{2}}\pm\frac{\sqrt{7}}{2\sqrt{2}}i\space[\because\space\sqrt{-1}=i]$$

    Miscellaneous Exercise

    $$\textbf{1. Evaluate}\bigg[\textbf{i}^{\textbf{18}}+\bigg(\frac{\textbf{1}}{\textbf{i}}\bigg)^{\textbf{25}}\bigg]^{\textbf{3}}.$$

    $$\textbf{Sol.}\bigg[i^{18}+\bigg(\frac{1}{i}\bigg)^{25}\bigg]^{3}\\=\bigg[i^{4×4+2}+\frac{1}{i^{4×6+1}}\bigg]^{3}\\=\bigg[(i^{4})^{4}×i^{2}+\frac{1}{(i^{4})^{6}×i}\bigg]^{3}\\=\bigg[i^{2}+\frac{1}{i}\bigg]^{3}\space\begin{bmatrix}i^{2}=-1\\i^{4}=1\end{bmatrix}\\=\bigg[-1+\frac{1}{i}\bigg]^{3}\\=\bigg[-1+\frac{i}{i×i}\bigg]^{3}$$

    [Multiply numerator and denominator by i]

    $$=\bigg[-1+\frac{i}{i^{2}}\bigg]^{3}\\=\bigg[-1+\frac{i}{-1}\bigg]^{3}\space\lbrace\because\space i^{2}=-1\rbrace$$

    = [– 1 – i]3

    = (– 1)3 [1 + i]3

    = – [13 + i3 + 3 × 1 × i(1 + i)]

    [(a + b)3 = a3 + b3 + 3ab(a + b)]

    = – [1 – i + 3i(1 + i)] [i3 = – i]

    = – [1 – i + 3i + 3i2] [i2 = – 1]

    = – [1 – i + 3i – 3]

    = – [– 2 + 2i]

    = 2 – 2i.

    2. For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2.

    Sol. Let assume z1 = x1 + iy1 and z2 = x2 + iy2 as two complex numbers.

    Product of these complex numbers z1z2.

    z1z2 = (x1 + iy1) (x2 + iy2)

    = x1 (x2 + iy2) + iy1 (x2 + iy2)

    = x1x2 + ix1y2 + iy1x2 + i2y1y2

    = x1x2+ ix1y2 + iy1x2 – y1y2

    {∵ i2 = – 1}

    =  (x1x2 – y1y2) + i(x1y2 + y1x2)

    Now Re(z1z2) = x1x2 – y1y2

    ⇒ Re(z1z2) = Rez1 Rez2 – Imz1 Imz2.

    $$\textbf{3. Reduce}\bigg(\frac{\textbf{1}}{\textbf{1-4i}}-\frac{\textbf{2}}{\textbf{1+i}}\bigg)\bigg(\frac{\textbf{3-4i}}{\textbf{5+i}}\bigg)\\\textbf{to the standard form.}$$

    $$\textbf{Sol.}\space\bigg(\frac{1}{1-4i}-\frac{2}{1+i}\bigg)\bigg(\frac{3-4i}{5+i}\bigg)$$

    Taking L.C.M.

    $$=\bigg[\frac{(1+i)-2(1-4i)}{(1-4i)(1+i)}\bigg]\bigg[\frac{3-4i}{5+i}\bigg]\\=\bigg[\frac{1+i-2+8i}{1+i-4i-4i^{2}}\bigg]\bigg[\frac{3-4i}{5+i}\bigg]\\=\bigg[\frac{-1+9i}{5-3i}\bigg]\bigg[\frac{3-4i}{5+i}\bigg]\\=\bigg[\frac{-3+4i+27i-36i^{2}}{25+5i-15i-3i^{2}}\bigg](t^{2}=-1)\\=\frac{33+31i}{28-10i}=\frac{33+31}{2(14-5i)}\\=\frac{(33+31i)}{2(14-5i)}×\frac{(14+5i)}{(14+5i)}$$

    [on multiplying numerator and denominator by (14 + 5i)]

    $$=\frac{462+165i+434i+155i}{2[(14)^{2}-(5i)^{2}]}\\=\frac{307+599i}{2(196-25i^{2})}\space\lbrace\because\space i^{2}=-1\rbrace\\=\frac{307+599i}{2(221)}=\frac{307+599i}{442}\\=\frac{307}{442}+\frac{599 i }{442}$$

    Hence, this is the required standard form.

    $$\textbf{4. If x-iy}=\sqrt{\frac{\textbf{a-ib}}{\textbf{c-id}}},\\\textbf{prove that}(\textbf{x}^{\textbf{2}}+\textbf{y}^{\textbf{2}})^{\textbf{2}}=\frac{\textbf{a}^{\textbf{2}}\textbf{+b}^{\textbf{2}}}{\textbf{c}^{\textbf{2}}\textbf{+d}^{\textbf{2}}}.$$

    $$\textbf{Sol.}\space x-iy=-\sqrt{\frac{\text{a-ib}}{\text{c-id}}}\\=\sqrt{\frac{(a-ib)}{(c-id)}×\frac{(c+id)}{(c+id)}}$$

    [on multiplying numerator and denominator by (c + id)]

    $$=\sqrt{\frac{a(c+id)-ib(c+id)}{c^{2}+(id)^{2}}}$$

    [a2 – b2 = (a + b) (a – b)]

    $$=\sqrt{\frac{(ac+bd)+i(ad+bc)}{c^{2}+d^{2}}}\space\lbrace\because i^{2}=-1\rbrace$$

    So, on squaring both sides we get

    $$(x-iy)^{2}=\frac{(ac+bd)+i(ad+bc)}{c^{2}+d^{2}}\\x^{2}-y^{2}-2ixy=\frac{(ac+bd)+i(ad-bc)}{c^{2}+d^{2}}$$

    On comparing real and imaginary parts, we get

    $$x^{2}-y^{2}=\frac{ac+bd}{c^{2}+d^{2}}\\\text{and}-2xy=\frac{ad-ac}{c^{2}+d^{2}}\space\text{...(i)}$$

    L.H.S. = (x2 + y2)2 = (x2 – y2)2 + 4x2y2

    $$=\bigg(\frac{ac+bd}{c^{2}+d^{2}}\bigg)^{2}+\bigg(\frac{ad-bc}{c^{2}+d^{2}}\bigg)^{2}\\\lbrack\text{from equation }(1)\rbrack\\=\frac{a^{2}c^{2}+b^{2}d^{2}+2acbd+a^{2}d^{2}+b^{2}c^{2}-2adbc}{(c^{2}+d^{2})^{2}}\\=\frac{a^{2}c^{2}+b^{2}d^{2}+a^{2}d^{2}+b^{2}c^{2}}{(c^{2}+d^{2})^{2}}\\=\frac{a^{2}(c^{2}+d^{2})+b^{2}(c^{2}+d^{2})}{(c^{2}+d^{2})^{2}}\\=\frac{(c^{2}+d^{2})(a^{2}+b^{2})}{(c^{2}+d^{2})^{2}}\\=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$$

    = R.H.S.

    5. Convert the following in the polar form:

    $$\textbf{(i)}\space\frac{\textbf{1+7i}}{\textbf{(2-i)}^{\textbf{2}}}\\\textbf{(ii)\space}\frac{\textbf{1+3i}}{\textbf{1-2i}}$$

    $$\textbf{Sol.}\space(i)\space z=\frac{1+7i}{(2-i)^{2}}\\=\frac{1+7i}{4+i^{2}-4i}=\frac{1+7i}{4-1-4i}\\\lbrack i^{2}=1\rbrack\\=\frac{1+7i}{3-4i}\\=\frac{(1+7i)}{(3-4i)}×\frac{(3+4i)}{(3+4i)}$$

    [on multiplying numerator and donominator by 3 + 4i]

    $$=\frac{1(3+4i)+7i(3+4i)}{(3)^{2}-(4i)^{2}}\\\lbrack(a+b)(a-b)=a^{2}-b^{2}\rbrack\\=\frac{3+4i+21i-28i^{2}}{3^{2}-4^{2}(\normalsize-1)}\space[i^{2}=-1]\\=\frac{3+4i+21i-28}{3^{2}+4^{2}}\space\lbrace\because\space i^{2}=-1\rbrace\\=\frac{-25+25i}{25}$$

    = – 1 + i

    Let r cos θ = – 1 and r sin θ = 1

    On squaring and adding both, we get

    r2 cos2 θ + r2 sin2 θ = (– 1)2 + 12

    r2 (cos2 θ + sin2 θ) = 1 + 1

    (cos2 θ + sin2 θ = 1)

    r2 = 2

    $$r=\sqrt{2}\space(r>0)$$

    (conventionally, r > 0)

    $$\text{So,}\space\sqrt{2}\space\text{cos}\space\theta=-1\space\text{and}\\\sqrt{2}\text{sin}\space\theta=1\\\Rarr\space\text{cos}\space\theta=\frac{\normalsize-1}{\sqrt{2}}\text{and}\space\text{sin}\space\theta=\frac{1}{\sqrt{2}}\\\theta=\pi-\frac{\pi}{4}=\frac{3\pi}{4}$$

    [As θ lies in II quadrant]

    Expressing as,

    z = r cos θ + ir sin θ

    $$z=\sqrt{2}\text{cos}\frac{3\pi}{4}+\sqrt{2i}\space\text{sin}\frac{3\pi}{4}\\z=\sqrt{2}\bigg(\text{cos}\frac{3\pi}{4}+i\space\text{sin}\frac{3\pi}{4}\bigg)$$

    Therefore, this is the required polar form.

    $$\text{(ii)}\space z=\frac{1+3i}{1-2i}\\z=\frac{(1+3i)}{(1-2i)}×\frac{(1+2i)}{(1+2i)}$$

    [on multiplying numerator and denominator by 1 + 2i]

    $$z=\frac{1+2i+3i-6}{(1)^{2}-(2i)^{2}}\\\lbrack(a+b)(a-b)=a^{2}-b^{2}\rbrack\\z=\frac{-5+5i}{1-4i}\space[i^{2}=-1]\\z=\frac{-5+5i}{1-4(-1)}=\frac{-5+5i}{1+4}\\z=\frac{-5+5i}{5}=-1+i$$

    Now, let r cos θ = – 1 and r sin θ = – 1

    On squaring and adding both we get

    r2 cos2 θ + r2 sin2 θ = (– 1)2 + (1)2

    r2 (cos2 θ + sin2 θ) = 1 + 1

    r2 = 2 [cos2 θ + sin2 θ = 1]

    $$r=\sqrt{2}\space\text{(conventionally r > 0)}$$

    $$\text{So,\space}\sqrt{2}\space\text{cos}\space\theta=-1\space\\\text{and}\space\sqrt{2}\space\text{sin}\space\theta=1\\\text{cos}\space\theta=\frac{-1}{\sqrt{2}}\text{and sin}\space\theta=\frac{1}{\sqrt{2}}\\\text{Therefore,}\space\theta=\pi-\frac{\pi}{4}=\frac{3\pi}{4}$$

    [As  θ lies in II quadrant]

    Therefore, expressing as,

    z = r cos  θ + ir sin  θ

    $$z=\sqrt{2}\space\text{cos}\frac{3\pi}{4}+\sqrt{2}\space\text{sin}\bigg(\frac{3\pi}{4}\bigg)\\=z=\sqrt{2}\bigg(\text{cos}\frac{3\pi}{4}+i\space\text{sin}\space\frac{3\pi}{4}\bigg)$$

    Therefore, this is the required polar form:

    Solve each of the equation in Exercises 6 to 9:

    $$\textbf{6. 3x}^{\textbf{2}}-\textbf{4x}+\frac{\textbf{20}}{\textbf{3}}\space\textbf{= 0.}\\\textbf{Sol.}\space\text{Let}\space z=3x^{2}-4x+\frac{20}{3}=0$$

    Multiply by 3 on both side

    9x2 – 12x + 20 = 0

    On comparing it with ax2 + bx + c = 0, we get

    a = 9, b = – 12 and c = 20

    So, the discriminant of the given equation is

    D = b2 – 4ac

    D = (– 12)2 – 4 × 9 × 20

    = 144 – 720

    = – 576

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}\\x=\frac{-(-12)\pm\sqrt{-576}}{2×9}\\x=\frac{12\pm\sqrt{576}i}{18}\space[\sqrt{-1}=i]\\x=\frac{12\pm24i}{18}=\frac{6(2\pm4i)}{18}\\x=\frac{2\pm4i}{3}=\frac{2}{3}\pm\frac{4i}{3}$$

    Hence, this is the required answer.

    $$\textbf{7.}\space\textbf{x}^{\textbf{2}}-\textbf{2x}+\frac{\textbf{3}}{\textbf{2}}\textbf{= 0.}\\\textbf{Sol.}\space\text{Let}\space z=x^{2}-2x+\frac{3}{2}=0$$

    Multiply by 2 on both side

    2x2 – 4x + 3 = 0

    On comparing it with ax2 + bx + c = 0, we get

    a = 2, b = – 4 and c = 3

    So, the discriminant of the given equation is

    D = b2 – 4ac

    D = (– 4)2 – 4 × 2 × 3

    = 16 – 24

    = – 8

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}\\x=\frac{-(-4)\pm\sqrt{-8}}{2×2}\\x=\frac{4\pm2\sqrt{2}i}{4}\space[\sqrt{-1}=i]\\x=1\pm\frac{\sqrt{2}}{2}i$$

    Hence, this is the required answer.

    8. 27x2 – 10x + 1 = 0.

    Sol. Let z = 27x2 – 10x + 1

    On comparing it with ax2 + bx + c = 0, we get

    a = 27, b = – 10 and c = 1

    So, the discriminant of the given equation is

    D = b2 – 4ac

    D = (– 10)2 – 4 × 27 × 1

    = 100 – 108 = – 8

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}\\ x=\frac{-(-10)\pm\sqrt{-8}}{2×27}\\=\frac{10\pm2\sqrt{2i}}{54}\space[\because\sqrt{\normalsize-1}=i]\\x=\frac{5\pm \sqrt{2i}}{27}\\x=\frac{5}{27}\pm\frac{\sqrt{2}}{\sqrt{27}}i$$

    Hence, this is the required answer.

    9. 21x2 – 28x + 10 = 0.

    Sol. 21x2 – 28x + 10 = 0

    On comparing it with ax2 + bx + c = 0, we have

    a = 21, b = – 28 and c = 10

    So, the discriminant of the given equation is

    D = b2 – 4ac

    D = (– 28)2 – 4 × 21 × 10

    D = 784 – 840

    D = – 56

    Hence, the required solutions are

    $$x=\frac{-b\pm\sqrt{D}}{2a}\\x=\frac{-(-28)\pm\sqrt{-56}}{2×21}\\x=\frac{28\pm\sqrt{56}i}{42}\space[\sqrt{-1}=i]\\x=\frac{28\pm2\sqrt{14}i}{42}\\x=\frac{28}{42}\pm\frac{2\sqrt{14}}{42}i\\x=\frac{2}{3}\pm\frac{\sqrt{14}}{21}i$$

    Hence, this is the required answer.

    $$\textbf{10.}\space \textbf{If z}_\textbf{1} \textbf{= 2 – i}, \textbf{z}_\textbf{2} \textbf{= 1 + i, find}\\\begin{vmatrix}\frac{\textbf{z}_\textbf{1}\textbf{+}\textbf{z}_\textbf{2}\textbf{+1}}{\textbf{z}_\textbf{1}\textbf{-}\textbf{z}_\textbf{2}\textbf{+1}}\end{vmatrix}.$$

    Sol. Given, z1 = 2 – i, z2 = 1 + i

    $$\text{So,}\space \begin{vmatrix}\frac{z_1+z_2+1}{z_1-z_2+1}\end{vmatrix}=\begin{vmatrix}\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\end{vmatrix}\\=\begin{vmatrix}\frac{4}{2-2i}\end{vmatrix}=\begin{vmatrix}\frac{4}{2(1-i)}\end{vmatrix}\\=\begin{vmatrix}\frac{2}{1-i}\end{vmatrix}\\=\begin{vmatrix}\frac{2}{(1-i)}×\frac{(1+i)}{(1+i)}\end{vmatrix}$$

    [on multiplying numerator and denominator by (1 + i)]

    $$\begin{vmatrix}\frac{2(1+i)}{(1)^{2}+(i)^{2}}\end{vmatrix}\\\lbrack(a+b)(a-b)=a^{2}-b^{2}\rbrack\\=\begin{vmatrix}\frac{2(1+i)}{1-(-1)}\end{vmatrix}\space[i^{2}=-1]\\=\begin{vmatrix}\frac{2(1+i)}{1+1}\end{vmatrix}\\=\begin{vmatrix}\frac{2(1+i)}{2}\end{vmatrix}\\=|1+i|=\sqrt{1^{2}+1^{2}}\\=\sqrt{2}$$

    Hence, this is the required answer.

    $$\textbf{11. If a + ib =}\frac{\textbf{(x+i)}^{\textbf{2}}}{\textbf{2x}^{\textbf{2}}\textbf{+1}},\textbf{prove that}\\\textbf{a}^{\textbf{2}}+\textbf{b}^{\textbf{2}}=\frac{(\textbf{x}^{\textbf{2}}\textbf{+1})^{\textbf{2}}}{(\textbf{2x}^{\textbf{2}}\textbf{+1})^{\textbf{2}}}.$$

    $$\textbf{Sol.}\space\text{Given,}\space\text{a+ib}=\frac{(x+i)^{2}}{2x^{2}+1}\\=\frac{x^{2}+i^{2}+2xi}{2x^{2}+1}\\\lbrace\because\space (a+b)^{2}=a^{2}+b^{2}=2ab\rbrace\\=\frac{x^{2}-1+2xi}{2x^{2}+1}\\=\frac{x^{2}-1}{2x^{2}+1}+i\bigg(\frac{2x}{2x^{2}+1}\bigg)$$

    Comparing the real and imaginary parts, we have

    $$a=\frac{x^{2}-1}{2x^{2}+1}\space\text{and}\\b=\frac{2x}{2x^{2}+1}$$

    Therefore,

    $$\text{L.H.S = a}^{2}+b^{2}=\\\bigg(\frac{x^{2}-1}{2x^{2}+1}\bigg)^{2}+\bigg(\frac{2x}{2x^{2}+1}\bigg)^{2}\\=\frac{x^{4}+1-2x^{2}+4x^{2}}{(2x^{2}+1)^{2}}\\=\frac{x^{4}+1+2x^{2}}{(2x^{2}+1)^{2}}=\frac{(x^{2}+1)^{2}}{(2x^{2}+1)^{2}}$$

    = R.H.S.      Hence Proved.

    12. Let z1 = 2 – i, z2 = – 2 + i. Find

    $$\textbf{(i)\space Re}\bigg(\frac{\textbf{z}_\textbf{1}\textbf{z}_\textbf{2}}{\textbf{z}_\textbf{1}}\bigg),\textbf{(ii) Im}\bigg(\frac{\textbf{1}}{\textbf{z}_\textbf{1}\bar{\textbf{z}}_\textbf{1}}\bigg).$$

    Sol. (i) Given, z1 = 2 – i, z2 = – 2 + i

    z1z2 = (2 – i) (– 2 + i)

    = – 4 + 2i + 2i – i2

    = – 4 + 4i – (– 1) [i2 = – 1]

    = – 4 + 4i + 1

    = – 3 + 4i

    $$\bar{z}_1=2+i\\\therefore\space\frac{z_1z_2}{\bar z_1}=\frac{-3+4i}{2+i}$$

    On multiplying numerator and denominator or by (2 – i), we get

    $$\frac{z_1z_2}{\bar{z}_1}=\frac{(-3+4i)(2-i)}{(2+i)(2-i)}\\=\frac{-3(2-i)+4i(2-i)}{2^{2}-(i^{2})}\\\lbrack(a+b)(a-b)=a^{2}-b^{2}\rbrack\\=\frac{-6+3i+8i-4i^{2}}{4-(-1)}\space\lbrace i^{2}=-1\rbrace\\=\frac{-6+11i-4(-1)}{4+1}\space[i^{2}=-1]\\=\frac{-6+11i-4(-1)}{4+1}=\frac{-2+11i}{5}.\\=\frac{-2}{5}+\frac{11}{5}i$$

    Comparing the real parts, we have

    $$\text{Re}\bigg(\frac{z_1z_2}{\bar{z_1}}\bigg)=\frac{-2}{5}$$

    Hence, this is the required answer.

    (ii) Given, z1 = 2 – i, z2 = – 2 + i

    $$\bar{z}_1=2+i$$

    $$\frac{1}{z_1\bar z_1}=\frac{1}{(2-i)(2+i)}=\frac{1}{2^{2}-(-i^{2})}$$

    [(a + b) (a – b) = a2 – b2]

    $$=\frac{1}{4-(-1)}\space\lbrace i^{2}=1\rbrace\\=\frac{1}{4+1}\\=\frac{1}{5}\\\text{On comparing the imaginary part,}\\\text{Im}\bigg(\frac{1}{z_1 \bar z_1}\bigg)=0$$

    Hence, this is the required answer.

    $$\textbf{13. Find the modulus and argument of the}\\ \textbf{complex number}\space\frac{\textbf{1+2i}}{\textbf{1-3i}}\textbf{.}$$

    $$\textbf{Sol.}\space\text{Let}\space z=\frac{1+2i}{1-3i},\text{then}\\z=\frac{(1+2i)(1+3i)}{(1-3i)(1+3i)},\text{then}\\z=\frac{1(1+3i)+2i(1+3i)}{(1)^{2}-(3i)^{2}}$$

    [(a + b) (a – b) = a2 – b2]

    $$z=\frac{1+3i+2i+6i^{2}}{1-(9)(i^{2})}\\z=\frac{1+5i+6(-1)}{1-9(-1)}\space[i^{2}=-1]\\=\frac{1+5i-6}{1+9}\\=\frac{-5+5i}{10}\\=\frac{-5}{10}+\frac{5}{10}i\\=\frac{-1}{2}+\frac{1}{2}i$$

    Let z = r cos θ + ir sin θ

    $$\text{So, r\space cos}\space\theta=\frac{\normalsize-1}{2}\\\text{and r sin}\theta=\frac{1}{2}$$

    On squaring and adding both, we get

    $$r^{2}\text{cos}^{2}\theta + r^{2}\space sin^{2}\theta\\=\bigg(\frac{\normalsize-1}{2}\bigg)^{2}+\bigg(\frac{1}{2}\bigg)^{2}\\\text{r}^{2}(\text{cos}^{2}\theta + \text{sin}^{2}\theta)=\\\frac{1}{4}+\frac{1}{4} $$

    (cos2 θ + sin2 θ = 1)

    $$r^{2}=\frac{2}{4}\\r^{2}=\frac{1}{2}\space\lbrack\text{conventionally} >0 \rbrack\\\text{r}=\frac{1}{\sqrt{2}}\\\text{Now,}\space\frac{1}{\sqrt{2}}\text{cos}\space\theta=\frac{-1}{2}\space\text{and}\\\frac{1}{\sqrt{2}}\space\text{sin}\space\theta=\frac{1}{2}\\\text{cos}\space\theta=\frac{-1}{\sqrt{2}}\space\text{and sin}\space\theta=\frac{1}{\sqrt{2}}\\\theta=\pi-\frac{\pi}{4}=\frac{3\pi}{4}$$

    [As q lies in the II quadrant]

    Hence, this is the required answer.

    14. Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of – 6 –24i.

    Sol. Given that

    z = (x – iy) (3 + 5i)

    = x(3 + 5i) – iy(3 + 5i)

    = 3x + 5xi – 3yi – 5yi2

    = 3x + 5xi – 3yi – 5y(– 1) (i2 = – 1)

    = 3x + 5xi – 3yi + 5y

    = (3x + 5y) + i(5x –3y)

    $$\bar{z}=(3x-5y)-i(5x-3y)$$

    Also given,

    $$\bar{z}= -6-24i$$

    And (3x + 5y) – i(5x – 3y) = – 6 – 24i

    On equating real and imaginary parts,

    3x + 5y = – 6 …(i)

    5x – 3y = 24 …(ii)

    Performing equation (i) × 3 + equation (ii) × 5, we get

    (9x + 15y) + (25x – 15y) = – 18 + 120

    34x = 102

    $$x=\frac{102}{34}$$

    x = 3

    Putting the values of x in equation (i), we get

    3(3) + 5y = – 6

    5y = – 6 –9 = – 15

    y = – 3

    Therefore, the values of x and y are 3 and – 3 respectively.

    $$\textbf{15. Find the modulus of}\space\frac{\textbf{1+i}}{\textbf{1-i}}-\frac{\textbf{1-i}}{\textbf{1+i}}\textbf{.}\\\textbf{Sol.}\space\frac{1+i}{1-i}-\frac{1-i}{1+i}\\=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}\\=\frac{1+i^{2}+2i-1-i^{2}+2i}{(1)^{2}-(i)^{2}}$$

    [(a + b) (a – b) = a2 – b2]

    $$=\frac{4i}{1-(-1)}\space(i^{2}=-1)\\=\frac{4i}{1+1}=\frac{4i}{2}=2i\\\begin{vmatrix}\frac{1+i}{1-i}-\frac{1-i}{1+i}\end{vmatrix}=|2i|=\sqrt{2^{2}}$$

    = 2

    Hence, the modulus is 2.

    16. If (x + iy)3 = u + iv, then show that

    $$\frac{\textbf{u}}{\textbf{x}}+\frac{\textbf{v}}{\textbf{y}}=\textbf{4(x}^{\textbf{2}}-\textbf{y}^{\textbf{2}}\textbf{).}$$

    Sol. Given (x + iy)3 = u + iv

    x3 + (iy)3 + 3·x·iy(x + iy) = u + iv

    [(a + b)3 = a3 + b3 + 3ab(a + b)]

    x3 + iy3 + 3x2yi + 3xy2i2 = u + iv

    x3 – iy3 + 3x2yi – 3xy2 = u + iv [i3 = – i]

    (x3 – 3xy2) + i(3x2y – y3) = u + iv

    On comparing real and imaginary part, we get

    u = x3 – 3xy2, v = 3x2y – y3

    $$\text{L.H.S}=\frac{u}{x}+\frac{v}{y}=\\\frac{x^{3}-3xy^{2}}{x}+\frac{3x^{2}y-y^{3}}{y}\\=\frac{x(x^{2}-3y^{2})}{x}+\frac{y(3x^{2}-y^{2})}{y}$$

    = x2 – 3y2+ 3x2 – y2

    = 4x2 – 4y2

    = 4(x2 – y2)

    =  R.H.S.        Hence Proved.

    17. If α and β are different complex numbers with

    $$|\beta|=1,\textbf{then find}\begin{vmatrix}\frac{\beta-\alpha}{1-\bar\alpha\beta}\end{vmatrix}.$$

    Sol. Let a = a + ib

    and b = x + iy

    Given, | β | = 1

    $$\text{So,}\space\sqrt{x^{2}+y^{2}}=1\\x^{2}+y^{2}\space\text{...(i)}\\\begin{vmatrix}\frac{\beta-\alpha}{1-\bar\alpha\beta}\end{vmatrix}=\begin{vmatrix}\frac{(x+iy)-(a+ib)}{1-(a-ib)(x+iy)}\end{vmatrix}\\=\begin{vmatrix}\frac{(x-a)+i(y-b)}{1-(ax+aiy-ibx+by)}\end{vmatrix}\\=\begin{vmatrix}\frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}\end{vmatrix}\\\begin{bmatrix}\frac{|Z_1|}{|Z_2|}=\frac{|z_1|}{|z_2|}\end{bmatrix}\\=\frac{|(x-a)+i(y-b)|}{|(1-ax-by)+i(bx-ay)|}\\=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-ax-by)^{2}+(bx-ay)^{2}}}$$

    $$=\space\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{1+a^{2}x^{2}+b^{2}y^{2}-2ax+2abxy-2by+b^{2}x^{2}+a^{2}y-2abxy}}$$

    $$=\space\frac{\sqrt{(x^{2}+y^{2})+a^{2}+b^{2}-2ax-2by}}{\sqrt{1+a^{2}(x^{2}+y^{2})+b^{2}(y^{2}+x^{2})-2ax-2by}}$$

    $$=\frac{\sqrt{(x^{2}+y^{2})+a^{2}+b^{2}-2ax-2by}}{\sqrt{1+a^{2}(x^{2}+y^{2})+b^{2}(y^{2}+x^{2})-2ax-2by}}\\=\frac{\sqrt{1+a^{2}+b^{2}-2ax-2by}}{\sqrt{1+a^{2}(x^{2}+y^{2})+b^{2}(y^{2}+x^{2})-2ax-2by}}\\=\frac{\sqrt{1+a^{2}+b^{2}-2ax-2by}}{\sqrt{1+a^{2}+b^{2}-2ax-2by}}\\\lbrack\text{using equation (i)}\rbrack\\=1\\\text{Therefore,}\begin{vmatrix}\frac{\beta-\alpha}{1-\bar\alpha\beta}\end{vmatrix}=1.$$

    18. Find the number of non-zero integral solutions of the equation | 1 – i |x = 2x.

    Sol. | 1 – i |x = 2x

    $$(\sqrt{1^{2}+(-1)^{2}})^{x}=2^{x}\\(\sqrt{2})^{x}=2^{x}\\2^{x/2}=2^{X}\\\lbrack\because\space (\sqrt{a})^{x}=(a^{1/2})^{x}=a^{x/2}\rbrack\\\frac{x}{2}=x$$

    x = 2x

    2x – x = 0

    x = 0

    Therefore, 0 is the only integral solution of the given equation.

    Hence, the number of non-zero integral solutions of the given equation is 0.

    19. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2+ B2.

    Sol. Given, (a + ib) (c + id) (e + if) (g + ih) = A + iB

    ∴ | (a + ib) (c + id) (e + if) (g + ih) | = | A + iB |

    ⇒ | a + ib | × | c + id | × | e + if | × | g + ih |

    = | A + iB |

    [| z1z2 | = | z1 | | z2 |]

    $$\Rarr\space\sqrt{a^{2}+b^{2}}×\sqrt{c^{2}+d^{2}}×\sqrt{e^{2}+f^{2}}×\sqrt{g^{2}+h^{2}}\\=\sqrt{A^{2}+B^{2}}$$

    On squaring both sides, we get

    (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.

    Hence Proved.

    $$\textbf{20.\space If}\space\bigg(\frac{\textbf{1+i}}{\textbf{1-i}}\bigg)^{\textbf{m}}=1,\\\textbf{then find the least positive integral}\\\textbf{value of m.}$$

    $$\textbf{Sol.}\space\bigg(\frac{1+i}{1-i}\bigg)^{m}=1\\\bigg[\frac{(1+i)}{(1-i)}×\frac{(1+i)}{(1+i)}\bigg]^{m}=1\\\bigg[\frac{(1+i)^{2}}{1^{2}-(i)^{2}}\bigg]^{m}=1$$

    [(a + b) (a – b) = a2 – b2]

    $$\bigg[\frac{1^{2}+i^{2}+2i}{1+1}\bigg]^{m}=1\space[i^{2}=-1]\\\bigg(\frac{1-1+2i}{2}\bigg)^{m}=1\\\bigg(\frac{2i}{2}\bigg)^{m}=1$$

    im = 1

    Hence, m = 4k, where k is some integer.

    Thus, the least positive integer is 1. Therefore, the least positive integral value of m is 4.

    Share page on

    CBSE CLASS 11 BOOKS