Introduction To Trigonometry Class 10 Notes Maths: Chapter 8
The dot mark ◉ field are mandatory, So please fill them in carefully
To download the complete Syllabus (PDF File), Please fill & submit the form below.
To download the complete Syllabus (PDF File), Please fill & submit the form below.
https://drive.google.com/file/d/1vfHM9rpB6bnNVo2csYKTI0_qzR3rVuCT/view
Introduction Totrigonometry
- If triangle ABC is right-angled at B and ∠BAC = θ, then with reference to the angle θ, we have Base = AB, Perpendicular = BC, and Hypotenuse = AC , and
$$sin\space\theta=\frac{Perpendicular}{{Hypotenuse}}:cos\space\theta=\frac{Base}{{Hypotenuse}}:\\tan\space\theta=\frac{Perpendicular}{{Base}}:cot\space\theta=\frac{Base}{{Hypotenuse}}:\\sec\space\theta=\frac{Hypotenuse}{{Base}}:coses\space\theta=\frac{Hypotenuse}{{Perpendicular}}$$
- $$\frac{1}{{sin\space\theta}}\space cosec\space\theta ;sec\space\theta= \frac{1}{{cos\space\theta}} ;cot\space\theta= \frac{1}{{tan\space\theta}}$$
- $$tan\space\theta= \frac{sin\space\theta}{{cos\space\theta}}\space and \space cot\space\theta=\frac{cos\space\theta}{{sin\space\theta}}$$
- The trigonometric ratios for angles 0°, 30°, 45°, 60°, and 90° are given in the table below :
Identity / Ratio | 0° | 30° | 45° | 60° | 90° |
sin θ | 0 | 1/2 | 1/√2 | √3/2 | 1 |
cos θ | 1 | √3/2 | 1/√2 | 1/2 | 0 |
tan θ | 0 | 1/√3 | 1 | √3 | ∞ |
cosec θ | ∞ | 2 | √2 | 2/√3 | 1 |
sec θ | 1 | 2/√3 | √2 | 2 | ∞ |
cot θ | ∞ | √3 | 1 | 1/√3 | 0 |
- if θ is an acute angle, then
sin (90°− θ)= cos θ ; | cos (90°− θ)= sin θ ; |
tan (90°− θ)= cot θ ; | cot (90°− θ)= tan θ ; |
sec (90°− θ)= cosec θ ; | cosec (90°− θ)= sec θ ; |
sin (− θ)= − sin θ ; | cos (− θ)= cos θ ; |
tan (− θ)= − tan θ ; | sec (− θ)= sec θ ; |
cosec (− θ)= − cosec θ ; | cot (− θ)= − cot θ ; |
- sin2 θ + cos2 θ = 1
sec2 θ - tan2 θ = 1
cosec2 θ - cot2 θ = 1
Mathematics Most Likely Question Bank
CBSE Class 10 for 2025 Exam
Rated 4.67 out of 5
Rated 5.00 out of 5
Rated 4.71 out of 5
Rated 4.83 out of 5