NCERT Solutions for Class 10 Maths Chapter 8 - Introduction to Trigonometry

NCERT Solutions for Class 10 Mathematics Chapter 8 Free PDF Download

Please Click on Free PDF Download link to Download the NCERT Solutions for Class 10 Mathematics Chapter 8 Introduction to Trigonometry

    Fields marked with a are mandatory, so please fill them in carefully.
    To download the PDF file, kindly fill out and submit the form below.

    Exercise 8.1

    1. In ΔABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine

    (i) sin A, cos A

    (ii) sin C, cos C

    Sol. (i) In right angled ΔABC, by using the Pythagoras theorem, we have

    Introduction of Trigonometry_ans10(1)

    AC2 = AB2 + BC2

    = (24)2 + (7)2

    = 576 + 49 = 625

    ∴ AC = 25 cm

    (∵ Side cannot be –ve)

    $$\text{Now, sin A =}\frac{\text{P}}{\text{H}}=\frac{\text{BC}}{\text{AC}}=\frac{\text{7}}{\text{25}}\\\text{and}\space\text{cos A}=\frac{\text{B}}{\text{H}}=\frac{\text{AB}}{\text{AC}}=\frac{\text{24}}{\text{25}}\\\text{(ii)}\space\text{sin C}=\frac{\text{P}}{\text{H}}=\frac{\text{AB}}{\text{AC}}=\frac{24}{25}\\\text{and}\space\text{cos C}=\frac{\text{B}}{\text{H}}=\frac{\text{CB}}{\text{AC}}=\frac{7}{25}$$

    2. In figure, find tan P – cot R.

    Sol. In right angled ΔPQR, By Pythagoras theorem

    PQ2 + QR2 = PR2

    ⇒ (12)2 + QR2 = (13)2

    ⇒ 144 + QR2 = 169

    ⇒ QR2 = 169 – 144 = 25

    ∴ QR = 5 cm

    (∵ Side cannot be negative)

    $$\text{tan}\space\text{P}=\frac{\text{P}}{\text{B}}=\frac{\text{QR}}{\text{PQ}}=\frac{5}{12}\\\text{and \space cot R=}\frac{\text{B}}{\text{P}}=\frac{\text{QR}}{\text{PQ}}=\frac{5}{12}\\\therefore\space\text{tan P – cot R =}\frac{5}{12}-\frac{5}{12}=0$$

    $$\textbf{3. If sin A =}\frac{3}{4}\space,\textbf{calculate cos A}\text{ and tan A.}$$

    $$\textbf{Sol.}\space\text{Given,\space sin A =}\frac{3}{4}\\\Rarr\space\frac{\text{P}}{\text{H}}=\frac{\text{3}}{\text{4}}$$

    Introduction of Trigonometry8_ans(3)

    Let BC = P = 3k and AC = H = 4k.

    In right angled ΔABC,

    P2 + B2 = H2

    (By Pythagoras theorem)

    ⇒ (3k)2 + AB2 = (4k)2

    ⇒ 9k2 + AB2 = 16k2

    ⇒ AB2 = 16k2 – 9k2 = 7k2

    $$\therefore\space\text{AB}+k\sqrt{7}\\(\because\space\text{Base cannot be – ve})\\\text{Now, cosA}=\frac{\text{B}}{\text{H}}=\frac{\text{AB}}{\text{AC}}\\=\frac{k\sqrt{7}}{4k}=\frac{\sqrt{7}}{4}\\\text{and\space tanA =}\frac{\text{P}}{\text{B}}=\frac{\text{BC}}{\text{AB}}=\frac{3k}{k\sqrt{7}}\\=\frac{3}{\sqrt{7}}×\frac{\sqrt{7}}{7}=\frac{3\sqrt{7}}{7}$$

    4. Given 15 cot A = 8, find sin A and sec A.

    Sol. Given, 15 cot A = 8

    $$\Rarr\space\text{cot A}=\frac{8}{15}\\\Rarr\space\frac{\text{B}}{\text{P}}=\frac{8}{15}=\frac{\text{AB}}{\text{BC}}$$

    Introduction of Trigonometry8_ans(4)

    Let AB = B = 8k and BC = P = 15k

    In right angled ΔABC, by pythagoras theorem

    H2 = B2 + P2

    AC2 = AB2 + BC2

    = (8k)2 + (15k)2

    = 64k2 + 225k2

    = 289k2

    ∴ AC = 17k (∵ Side cannot be – ve)

    $$\text{Now, sin A =}\frac{\text{P}}{\text{H}}=\frac{\text{BC}}{\text{AC}}\\=\frac{\text{15k}}{\text{17k}}=\frac{\text{15}}{\text{17}}\\\text{and sec A =}\frac{\text{H}}{\text{B}}=\frac{\text{AC}}{\text{AB}}\\=\frac{\text{17 k}}{\text{8k}}=\frac{17}{8}$$

    $$\textbf{5. Given sec}\space\theta =\frac{13}{12},\\\textbf{calculate all other trigonometric ratios.}$$

    $$\textbf{Sol.}\space\text{Given \space sec}\space\theta=\frac{13}{12}\\\Rarr\space\frac{\text{H}}{\text{B}}=\frac{13}{12}$$

    Let H = 13k, B = 12k

    In right angled triangle, by pythagoras theorem

    (Perpendicular)2 + (Base)2 = (Hypotenuse)2

    ⇒ P2 + (12k)2 = (13k)2

    ⇒ P2 + 144k2 = 169k2

    ⇒ P2 = 169k2 – 144k2 = 25k2

    ⇒ P = 5k (∵ Side cannot be –ve)

    $$\text{Now, \space sin}\space\theta=\frac{\text{P}}{\text{H}}=\frac{5k}{13k}=\frac{5}{13}\\\text{cos}\space\theta=\frac{\text{B}}{\text{H}}=\frac{12k}{13k}=\frac{12}{13}\\\text{tan\space}\theta=\frac{\text{P}}{\text{B}}=\frac{5k}{12k}=\frac{5}{12}\\\text{cosec}\space\theta =\frac{1}{\text{sin}\theta}=\frac{13}{5}\\\text{and\space cot}\theta=\frac{1}{\text{tan}\space\theta}=\frac{12}{5}$$

    Chapter 8 Trigonometry
    Play Video about Chapter 8 Trigonometry

    6. If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

    Sol. Given : ΔABC, in which

    cos A = cos B

    To prove : ∠A = ∠B

    Introduction of Trigonometry8_ans(6)

    Proof : Now, cos A = cos B

    $$\therefore\space\frac{\text{AC}}{\text{AB}}=\frac{\text{BC}}{\text{AB}}\\\bigg(\because\space\text{cos}\space\theta=\frac{\text{Base}}{\text{Hypotenunse}}\bigg)$$

    ⇒ AC = BC

    ⇒ ∠A = ∠B

    (∵ Angle opposite to equal sides are also equal)

    Hence Proved.

    $$\textbf{7. If cot} \theta =\frac{\textbf{7}}{\textbf{8}},\textbf{evaluate}\\\textbf{(i)}\space\frac{(\textbf{1}+\textbf{sin}\theta)(1-\textbf{sin}\theta)}{(\textbf{1}+\textbf{cos}\theta)(\textbf{1}-\textbf{cos}\theta)}$$

    (ii) cot2 θ

    $$\textbf{Sol.}\space\text{Given, \space cot}\space\theta =\frac{7}{8}\\\Rarr\space\frac{\text{B}}{\text{P}}=\frac{\text{7}}{\text{8}}$$

    Introduction of Trigonometry8_ans(7)

    Let B = 7k, P = 8k

    In a right angled ΔABC, by pythagoras theorem

    H2 = B2 + P2

    = 49k2 + 64k2

    = 113k2

    $$\therefore\space\text{H}=k\sqrt{113}\\(\because\space\text{Side cannot be –ve})\\\text{Now, sin} \theta=\frac{\text{P}}{\text{H}}=\frac{\text{8k}}{k\sqrt{113}}=\frac{\text{8}}{\sqrt{113}}\\\text{and \space cos}\space\theta=\frac{\text{B}}{\text{H}}=\frac{7k}{k\sqrt{113}}=\frac{7}{\sqrt{113}}\\\text{(i)}\space\frac{(1+\text{sin}\theta)(1-\text{sin}\theta)}{(1+\text{cos}\theta)(1-\text{cos}\theta)}\\=\frac{1^{2}-\text{sin}^{2}\theta}{1^{2}-\text{cos}^{2}\theta}\\\lbrack\because(a + b)(a – b) = a^2 – b^2\rbrack\\=\frac{1-\bigg(\frac{8}{\sqrt{113}}\bigg)^{2}}{1-\bigg(\frac{7}{\sqrt{113}}\bigg)^{2}}$$

    $$=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}=\frac{\frac{113-64}{113}}{\frac{113-49}{113}}=\frac{49}{64}\\\textbf{(ii)\space}\text{cot}^{2}\theta=\bigg(\frac{7}{8}\bigg)^{2}=\frac{49}{64}\\\bigg(\because\space\text{Given cot}\theta=\frac{7}{8}\bigg)$$

    8. If 3 cot A = 4, check whether

    $$\frac{\textbf{1}-\textbf{tan}^{2}\textbf{A}}{\textbf{1}+\textbf{tan}^{2}\textbf{A}}=\textbf{cos}^{\textbf{2}}\textbf{A\space– sin}^\textbf{2} \textbf{A or not.}$$

    Sol. Given, 3 cot A = 4

    $$\therefore\space\text{cot A}=\frac{4}{3}\\\Rarr\space\frac{\text{B}}{\text{P}}=\frac{4}{3}=\frac{\text{AB}}{\text{BC}}$$

    Introduction of Trigonometry8_ans(8)

    In right angled ΔABC, by pythagoras theorem

    AC2 = AB2 + BC2

    H2 = P2 + B2

    = (3k)2 + (4k)2

    = 9k2 + 16k2 = 25k2

    ∴ AC = H = 5k (∵ Side cannot be –ve)

    $$\text{Now, tan A}=\frac{1}{\text{cot}A}=\frac{3}{4}\space\bigg(\because\text{cotA}=\frac{4}{3}\bigg)\\\text{cos A}=\frac{\text{B}}{\text{H}}=\frac{\text{AB}}{\text{AC}}=\frac{4}{5}\\\text{and\space sin A}=\frac{\text{P}}{\text{H}}=\frac{\text{BC}}{\text{AC}}=\frac{3}{5}\\\text{LHS}=\frac{1-\text{tan}^{2}\text{A}}{1+\text{tan}^{2}\text{A}}\\=\frac{1-\bigg(\frac{3}{4}\bigg)^{2}}{1+\bigg(\frac{3}{4}\bigg)^{2}}\\=\frac{\frac{16-9}{16}}{\frac{16+9}{16}}=\frac{7}{25}$$

    ...(i)

    and RHS = cos2 A – sin2 A

    $$=\bigg(\frac{4}{5}\bigg)^{2}-\bigg(\frac{3}{5}\bigg)^{2}\\=\frac{16-9}{25}=\frac{7}{25}\space\text{...(ii)}$$

    From equations (i) and (ii), w
    e get

    LHS  = RHS

    $$\textbf{9. In triangle ABC, right angled at B, if tan A =}\frac{\textbf{1}}{\sqrt{\textbf{3}}},$$

    find the value of

    (ii) sin A cos C + cos A sin C

    (iii) cos A cos C – sin A sin C

    $$\textbf{Sol.}\space\text{Given,\space tan A =}\frac{1}{\sqrt{3}}\\\Rarr\space\frac{\text{P}}{\text{B}}=\frac{1}{\sqrt{3}}\\\text{Let P = k, B =}\sqrt{3k}$$

    In a right angled by pythagoras theorem

    B2 + P2 = H2

    $$\Rarr\space(\sqrt{3}k)^{2}+(1k)^{2}=\text{H}^{2}$$

    ⇒ 3k2 + k2 = H2

    ⇒ H2 = 4k2

    ∴ H = 2k (∵ Side cannot be –ve)

    (i) sin A cos C + cos A sin C

    $$=\bigg(\frac{\text{P}}{\text{H}}\bigg)\bigg(\frac{\text{B}}{\text{H}}\bigg)+\bigg(\frac{\text{B}}{\text{H}}\bigg)\bigg(\frac{\text{P}}{\text{H}}\bigg)\\\bigg(\frac{k}{2k}\bigg)\bigg(\frac{k}{2k}\bigg)+\bigg(\frac{k\sqrt{3}}{2k}\bigg)\bigg(\frac{k\sqrt{3}}{2k}\bigg)\\=\frac{k^{2}}{4k^{2}}+\frac{3k^{2}}{4k^{2}}=\frac{4k^{2}}{4k^{2}}=\frac{4}{4}$$

    = 1

    (ii) cos A cos C – sin A sin C

    $$=\bigg(\frac{\text{P}}{\text{H}}\bigg)\bigg(\frac{\text{P}}{\text{H}}\bigg)-\bigg(\frac{\text{B}}{\text{H}}\bigg)\bigg(\frac{\text{B}}{\text{H}}\bigg)\\=\bigg(\frac{k}{2k}\bigg)\bigg(\frac{k\sqrt{3}}{2k}\bigg)-\bigg(\frac{k\sqrt{3}}{2}\bigg)\bigg(\frac{k}{2k}\bigg)\\=\frac{1}{2}×\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}×\frac{1}{2}\\=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0$$

    10. In ΔPQR, right angled at Q, PR +QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

    Sol. Let QR = x and PR = y

    Given, PR + QR = 25

    ⇒ y + x = 25

    ⇒ y = (25 – x) ...(i)

    Introduction of Trigonometry8_ans(10)
    In right angled ΔPQR, by pythagoras theorem
     
    x2 + (5)2 = y2
     
    ⇒ x2 + 25 = (25 – x)2
     
    [Put the value of y from equation (ii)]
     
    ⇒ x2 + 25 = 625 + x2 – 50x
     
    ⇒ x2 – x2 + 50x = 625 – 25
     
    ⇒ 50x = 600
    $$\therefore\space x=\frac{600}{50}=12\text{cm}$$
     
    From equation (i), we get y = 25 – 12 = 13 cm
    $$\text{Now, \space sin}\space\text{P}=\frac{\text{RQ}}{\text{PR}}=\frac{\text{x}}{\text{y}}=\frac{12}{13}\\\text{cos\space}\text{P}=\frac{\text{PQ}}{\text{PR}}=\frac{5}{y}=\frac{5}{13}\\\text{and tan P =}\frac{\text{QR}}{\text{PQ}}=\frac{x}{5}=\frac{12}{15}$$

    11. State whether the following are true or false. Justify your answer.

    (i) The value of tan A is always less than 1.

    $$\textbf{(ii) sec A =}\frac{\textbf{12}}{\textbf{5}}\space\textbf{for some value of angle A.}$$

    (iii) cos A is the abbreviation used for the cosecant of angle A.

    (iv) cot A is the product of cot and A.

    $$\textbf{(v)sin}\space\theta=\frac{\textbf{4}}{\textbf{3}}\textbf{for some angle}\space\theta.$$

    Sol. (i) False, because the value of tan A increases from 0 to ∞. Also, tan 45° = 1.

    (ii) True, because the value of sec A increase from 1 to ∞.

    (iii) False, because cos A is the abbreviation used for the cosine of angle A. And cosecant k is for cosec A.

    (iv) False, because cot A is one symbol. We cannot seperate cot and A.

    (v) False, because the value of sin θ always lies between 0 and 1.

    $$\text{Here, sin}\space\theta =\frac{4}{3}$$

    which is greater than 1. So, it is not possible.

    Exercise 8.2

    1. Evaluate the following

    (i) sin 60° cos 30° + sin 30° cos 60°

    (ii) 2 tan2 45° + cos2 30° – sin2 60°

    $$\textbf{(iii)}\space\frac{\textbf{cos 45}\degree}{\textbf{sec 30}\degree+\textbf{cosec 30}\degree}\\\textbf{(iv)\space}\frac{\textbf{sin 30}\degree+\textbf{tan 45}\degree-\textbf{cosec 60}\degree}{\textbf{sec 30}\degree+\textbf{cos 30}\degree+\textbf{cos 45}\degree}\\\textbf{(v)\space}\frac{\textbf{5}\space\textbf{cos}^{2}\textbf{60}\degree+\textbf{4}\space\textbf{sec}^{2}\textbf{30}\degree-\textbf{tan}^{2}\textbf{45}\degree}{\textbf{sin}^{2}\textbf{30}\degree+\textbf{cos}^{2}\textbf{30}\degree}$$

    Sol. (i) sin 60° cos 30° + sin 30° cos 60°

    On putting the values

    $$=\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}+\frac{1}{2}×\frac{1}{2}\\=\frac{3}{4}+\frac{1}{4}\\=\frac{3+1}{4}\\=\frac{4}{4}=1$$

    (ii) 2 tan2 45° + cos2 30° – sin2 60°

    On putting the values

    $$2(1)^{2}+\bigg(\frac{\sqrt{3}}{2}\bigg)^{2}-\bigg(\frac{\sqrt{3}}{2}\bigg)^{2}\\=2(1)+\frac{3}{4}-\frac{3}{4}=2$$

    $$\textbf{(iii)\space}\frac{\text{cos 45\degree}}{\text{sec 30\degree + cosec 30\degree}}$$

    On putting the values

    $$=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}} + \frac{2}{1}}\\=\frac{\frac{1}{\sqrt{2}}}{\frac{2+2\sqrt{3}}{\sqrt{3}}}=\frac{1}{\sqrt{2}}×\frac{\sqrt{3}}{(2+2\sqrt{3})}\\=\frac{\sqrt{3}}{2\sqrt{2}+2\sqrt{6}}×\frac{2\sqrt{2}-2\sqrt{6}}{2\sqrt{2}-2\sqrt{6}}\\=\frac{2\sqrt{6}-2\sqrt{18}}{(2\sqrt{2})^{2}-2\sqrt{6})^{2}}\\=\frac{2\sqrt{6}-2\sqrt{18}}{(2\sqrt{2})^{2}-(2\sqrt{6})^{2}}\\=\frac{2\sqrt{6}-2(3\sqrt{2})}{8-24}$$

    $$=\frac{-2(3\sqrt{2})+2\sqrt{6}}{-16}=\frac{-2(3\sqrt{2}-\sqrt{6})}{-16}\\=\frac{3\sqrt{2}-\sqrt{6}}{8}$$

    $$\textbf{(iv)}\space\frac{\text{sin 30}\degree+\text{tan 45}\degree-\text{cosec 60}\degree}{\text{sec 30}\degree+\text{cos 60}\degree+\text{cot 45}\degree}$$

    On putting the values we get

    $$=\frac{\frac{1}{2}+\frac{1}{1}-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}\\=\frac{\frac{\sqrt{3}+2\sqrt{3}-4}{2\sqrt{3}}}{\frac{4+\sqrt{3}+2\sqrt{3}}{2\sqrt{3}}}\\=\frac{3\sqrt{3}-4}{4+3\sqrt{3}}×\frac{4-3\sqrt{3}}{4-3\sqrt{3}}$$

    $$\text{(Multiply by conjugate of }4+3\sqrt{3}\\\space\text{in numerator and denominator both)}\\=\frac{12\sqrt{3}-27-16+12\sqrt{3}}{16-27}\\=\frac{24\sqrt{3}-43}{-11}\\\frac{-(43-24\sqrt{3})}{11}\\=\frac{43-24\sqrt{3}}{11}$$

    $$\textbf{(v)}\space\frac{5\text{cos}^{2}60\degree+4\text{sec}^{2}30\degree-\text{tan}^{2}45\degree}{\text{sin}^{2}30\degree+\text{cos}^{2}30\degree}$$

    On putting the values, we get

    $$=\frac{5\bigg(\frac{1}{2}\bigg)^{2}+4\bigg(\frac{2}{\sqrt{3}}\bigg)^{2}-(1)^{2}}{\bigg(\frac{1}{2}\bigg)^{2}+\bigg(\frac{\sqrt{3}}{2}\bigg)^{2}}\\=\frac{5\bigg(\frac{1}{4}\bigg)+4\bigg(\frac{4}{3}\bigg)-1}{\frac{1}{4}+\frac{3}{4}}\\=\frac{\frac{(15+64-12)}{12}}{\bigg(\frac{1+3}{4}\bigg)}=\frac{67}{12}×\frac{4}{4}=\frac{67}{12}$$

    2. Choose the correct option and justify your choice

    $$\textbf{(i)}\space\frac{2\space\textbf{tan}\textbf{30}\degree}{1+\textbf{tan}^{2}\textbf{30}\degree}\textbf{=}$$

    (a) sin 60°

    (b) cos 60°

    (c) tan 60°

    (d) sin 30°

    $$\textbf{(ii)}\space\frac{1-\textbf{tan}^{\textbf{2}}\textbf{45}\degree}{1+\textbf{tan}^{2}\textbf{45}\degree}=$$

    (a) tan 90°

    (b) 1

    (c) sin 45°

    (d) 0

    (iii) sin 2A = 2 sin A is true when A =

    (a) 0°

    (b) 30°

    (c) 45°

    (d) 60°

    $$\textbf{(iv)}\space\frac{2\textbf{tan}\textbf{30}\degree}{1-\textbf{tan}^{2}\textbf{30}\degree}\textbf{=}$$

    (a) cos 60°

    (b) sin 60°

    (c) tan 60°

    (d) sin 30°

    Sol. (i) (a) sin 60°

    Explanation :

    $$\frac{2 \textbf{tan} \textbf{30}\degree}{\textbf{1+ tan}^{2}\textbf{30}\degree}=\frac{2\bigg(\frac{1}{\sqrt{3}}\bigg)}{1+\bigg(\frac{1}{\sqrt{3}}\bigg)^{2}}=\frac{\frac{2}{\sqrt{3}}}{\bigg(1+\frac{1}{3}\bigg)}\\=\frac{\frac{2}{\sqrt{3}}}{\bigg(\frac{3+1}{3}\bigg)}=\frac{2}{\sqrt{3}}×\frac{3}{4}\\\frac{\sqrt{3}}{2}=\text{sin}\space 60\degree$$

    (ii) (d) 0

    Explanation :

    $$\frac{1-\text{tan}^{2}45\degree}{1+\text{tan}^{2}45\degree}=\frac{1-(1)^{2}}{1+(1)^{2}}\\=\frac{1-1}{1+1}=\frac{0}{2}=0$$

    (iii) (a) 0°

    Explanation :

    Given, sin 2A = 2 sin A

    When A = 0°, sin (2 × 0°) = 2 sin (0°)

    ⇒ sin(0°) = 2(0)

    0 = 0, True

    (iv) (c) tan 60°

    Explanation :

    $$\frac{2\text{tan}30\degree}{1-\text{tan}^{2}30\degree}=\frac{2\bigg(\frac{1}{\sqrt{3}}\bigg)}{1-\bigg(\frac{1}{\sqrt{3}}\bigg)^{2}}\\=\frac{\frac{2}{\sqrt{3}}}{\frac{3-1}{3}}\\\frac{2}{\sqrt{3}}×\frac{3}{2}=\frac{3}{\sqrt{3}}\\=\sqrt{3}=\text{tan 60°}$$

    $$\textbf{3. If tan (A + B) =} \sqrt{3}\space\textbf{and tan(A – B) =}\frac{\textbf{1}}{\sqrt{\textbf{3}}};\\\textbf{0° < A + B ≤ 90°; A < B, find A and B.}$$

    $$\textbf{Sol.}\space\text{We have, tan(A + B) =}\sqrt{3}$$

    ⇒ tan(A + B) = tan 60°

    ∴ A + B = 60° ...(i)

    $$\text{and tan(A – B) =}\frac{1}{\sqrt{3}}$$

    ⇒ tan(A – B) = tan 30°

    ∴ A – B = 30° ...(ii)

    On adding (i) and (ii), we get

    ⇒ A = 45°

    ⇒ B = 60° – 45°

    ⇒ B = 15°

    Hence, A = 45° and B = 15°.

    4. State whether the following are true or false. Justify your answer.

    (i) sin(A + B) = sin A + sin B

    (ii) The value of sin θ increases as θ increases.

    (iii) The value of cos θ increases as θ increases.

    (iv) sin θ = cos θ for all values of θ

    (v) cot A is not defined for A = 0°.

    Sol. (i) False; because

    When A = 60° and B = 30°

    sin(A + B) = sin(60° + 30°)

    = sin 90° = 1

    and sin A + sin B = sin 60° + sin 30°

    $$=\frac{\sqrt{3}}{2}+\frac{1}{2}\\=\frac{\sqrt{3}+1}{2}$$

    So, sin(A + B) ≠ sin A + sin B

    (ii) True; because, it is clear from the table below that the sin θ increase as θ increase.

    θ sin θ
    0
    30° $$\frac{1}{2}$$
    45° $$\frac{1}{\sqrt{2}}$$
    60° $$\frac{\sqrt{3}}{2}$$
    90° 1

    (iii) False; because it is clear from the table below that the cos θ does not increase as θ increase and it decreases.

    θ cos θ
    1
    30° $$\frac{\sqrt{3}}{2}$$
    45° $$\frac{1}{\sqrt{2}}$$
    60° $$\frac{1}{2}$$
    90° 0

    (iv) False; because it is true only for θ = 45°

    $$\bigg(\because\text{sin}45\degree=\frac{1}{\sqrt{2}}=\text{cos}45\degree\bigg)$$

    (v) True; since for A = 0°, tan A = tan 0° = 0

    $$\therefore\space\text{cot A}=\frac{1}{\text{tan A}}=\frac{1}{0}=\text{not defined (∞)}$$

    Exercise 8.3

    1. Evaluate

    $$\textbf{(i)}\space\frac{\textbf{sin}\textbf{18}\degree}{\textbf{cos}\textbf{72}\degree}\\\textbf{(ii)}\space \frac{\textbf{tan 26}\degree}{\textbf{cot 64}\degree}$$

    (iii) cos 48° – sin 42°

    (iv) cosec 31° – sec 59°

    $$\textbf{Sol. \space(i)}\space\frac{\text{sin}18\degree}{\text{cos}72\degree}=\frac{\text{sin}(90\degree-72\degree)}{\text{cos}\space 72\degree}\\=\frac{\text{cos}\space72\degree}{\text{cos}\space72\degree}=1\\\lbrack\because\space\text{sin}(90\degree-\theta)=\text{cos}\theta\rbrack\\\textbf{(ii)\space}\frac{\text{tan}\space26\degree}{\text{cot}\space64\degree}\\=\frac{\text{tan}26\degree}{\text{cot}(90\degree-26\degree)}\\\frac{\text{tan 26}\degree}{\text{tan 26}\degree}$$

    [∵ cot(90° – θ) = tan θ]

    = 1

    (iii) cos 48° – sin 42° = cos(90° – 42°) – sin 42°

    = sin 42° – sin 42°

    [∵ cos(90° –  θ) = sin  θ]

    = 0

    (iv) cosec 31° – sec 59°

    = cosec 31° – sec(90° – 31°)

    = cosec 31° – cosec 31°

    [∵ sec(90° – θ) = cosec θ]

    = 0

    2. Show that

    (i) tan 48° tan 23° tan 42° tan 67° = 1

    (ii) cos 38° cos 52° – sin 38° sin 52° = 0

    Sol. (i) LHS = tan 48° tan 23° tan 42° tan 67°

    = tan 48°. tan 23° tan(90° – 48°). tan(90° – 23°)

    = tan 48°. tan 23°. cot 48°. cot 23°

    [∵ tan(90° – θ) = cot θ]

    $$=\text{tan 48°. tan 23° .}\frac{1}{\text{tan 48}\degree}.\frac{1}{\text{tan 23}\degree}\\\bigg(\because\text{cot}\theta=\frac{1}{\text{tan}\space\theta}\bigg)$$

    = 1 = R.H.S

    (ii) LHS = cos 38° cos 52° – sin 38° sin 52°

    = cos(90° – 52°) cos(90° – 38°)– sin 38° sin 52°

    = sin 52° sin 38° – sin 38° sin 52°

    [∵ cos(90° –  θ) = sin  θ]

    = 0 = RHS

    3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.

    Sol. Given, tan 2A = cot(A – 18°)

    ⇒ cot(90° – 2A) = cot(A – 18°)

    [∵  tan θ = cot(90° – θ)]

    On comparing the angles on both sides, we get

    ⇒ 90° – 2A = A – 18°

    ⇒ 108° = 3A

    $$\Rarr\space\text{A}=\frac{108\degree}{3}=36\degree$$

    4. If tan A = cot B, prove that A + B = 90°

    Sol. Given, tan A = cot B

    ⇒ cot(90° – A) = cot B

    [∵ tan θ = cot (90° – θ)]

    On comparing the angles on both sides, we get

    ⇒ 90° – A = B

    ∴  90° = A + B

    or A + B = 90°

    5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.

    Sol. Given, sec 4A = cosec (A – 20°)

    ⇒ cosec (90° – 4A) = cosec (A – 20°)

    [∵ sec  θ = cosec (90° –  θ)]

    On comparing the angles on both sides, we get

    ⇒ 90° – 4A = A – 20°

    ⇒ 90° + 20° = A + 4A

    ⇒ 110° = 5A

    $$\Rarr\space\text{A}=\frac{110\degree}{5}=22\degree$$

    6. If A, B and C are interior angles of a triangle ABC, then show that

    $$\textbf{sin}\bigg(\frac{\textbf{B+C}}{\textbf{2}}\bigg)=\textbf{cos}\frac{\textbf{A}}{\textbf{2}}$$

    Sol. We know that,

    Sum of all angles in a triangle is 180°.

    ∴ A + B + C = 180°

    $$\Rarr\space\frac{\text{A}}{2}+\frac{\text{B}}{2}+\frac{\text{C}}{2}=90\degree\\\Rarr\space\frac{\text{B}}{2}+\frac{\text{C}}{2}=90\degree-\frac{\text{A}}{2}$$

    Taking sine of angle on both sides, we get

    $$\text{sin}\bigg(\frac{\text{B+C}}{2}\bigg)=\text{sin}\bigg(90\degree-\frac{\text{A}}{2}\bigg)\\\Rarr\space\text{sin}\bigg(\frac{\text{B+C}}{2}\bigg)=\text{cos}\frac{\text{A}}{2}$$

    [∵ sin (90° –  θ) = cos  θ]

    Hence Proved.

    7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

    Sol. We have,

    sin 67° + cos 75° = sin(90° – 23°) + cos(90° – 15°)

    = cos 23° + sin 15°

    [∵ sin(90° –  θ) = cos  θ and cos(90° –  θ) = sin  θ]

    Exercise 8.4

    1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

    Sol. (i) By identity,

    cosec2 A = 1 + cot2 A

    $$\Rarr\space\text{cosec A}=\sqrt{1+\text{cot}^{2}\text{A}}\\\text{Now, sin A =}\frac{1}{\text{cosec A}}\\=\frac{1}{\sqrt{1+\text{cot}^{2}\text{A}}}\\\bigg(\because\space\text{sin A}=\frac{1}{\text{cosec A}}\bigg)\\\textbf{(ii)}\space\text{tan A =}\frac{1}{\text{cot A}}\\\bigg(\because\text{tan A}=\frac{1}{\text{cot A}}\bigg)$$

    (iii) By identity,

    sec2 A = 1 + tan2 A

    $$\Rarr\space\text{sec A =}\sqrt{1+\text{tan}^{2} \text{A}}\\=\sqrt{1+\bigg(\frac{1}{\text{cot A}}\bigg)^{2}}\\=\sqrt{1+\frac{1}{\text{cot}^{2}\text{A}}}\\\bigg(\because\text{tan A}=\frac{1}{\text{cot A}}\bigg)\\=\sqrt{\frac{1+\text{cot}^{2}\text{A}}{\text{cot}^{2}\text{A}}}\\=\frac{\sqrt{1+\text{cot}^{2}\text{A}}}{\text{cot A}}$$

    2. Write all the other trigonometric ratios of ∠A in terms of sec A.

    Sol. (i) By identity,

    sin2 A + cos2 A = 1

    ⇒ sin2 A = 1 – cos2 A

    $$\Rarr\space\text{sin A =}\sqrt{1-\text{cos}^{2}\text{A}}\\=\sqrt{1-\frac{1}{\text{sec}^{2}\text{A}}}\\\bigg(\because\text{cos A}=\frac{1}{\text{sec A}}\bigg)\\=\sqrt{\frac{\text{sec}^{2}\text{A}-1}{\text{sec}^{2}A}}\\=\frac{\sqrt{\text{sec}^{2}\text{A}-1}}{\text{sec A}}\\\textbf{(ii)\space}\text{cos A =}\frac{1}{\text{sec A}}\space\bigg(\because\text{cos A}=\frac{1}{\text{sec A}}\bigg)$$

    (iii) We know that,

    sec2 A = 1 + tan2 A

    ⇒ tan2 A = sec2 A – 1

    $$\Rarr\space\text{tan A}=\sqrt{\text{sec}^{2}\text{A}-1}\\\textbf{(iv)}\space\text{cot A}=\frac{1}{\text{tan A}}=\frac{1}{\sqrt{sec^{2}\text{A-1}}}\\\text{[By using part (iii)]}\\\textbf{(v)\space}\text{cosec A =}\frac{1}{\text{sin A}}=\frac{\text{sec A}}{\sqrt{\text{sec}^{2}}\text{A}-1}$$

    [By using part (i)]

    3. Evaluate

    $$\textbf{(i)\space}\frac{\textbf{sin}^{2}\textbf{63}\degree+\textbf{sin}^{2}\textbf{27}\degree}{\textbf{cos}^{2}\textbf{17}\degree+\textbf{cos}^{2}\textbf{73}\degree}$$

    (ii) sin 25° cos 65° + cos 25° sin 65°

    $$\textbf{Sol. (i)}\space\frac{\text{sin}^{2}63\degree+\text{sin}^{2}27\degree}{\text{cos}^{2}17\degree+\text{cos}^{2}73\degree}\\=\frac{\text{sin}^{2}63\degree+\text{sin}^{2}(90\degree-63\degree)\degree}{\text{cos}^{2}17\degree+\text{cos}^{2}(90\degree-17\degree)}\\\frac{\text{sin}^{2}63\degree+\text{cos}^{2}63\degree}{\text{cos}^{2}17\degree+\text{sin}^{2}17\degree}\\\begin{bmatrix}\because\space\text{sin(90\degree-}\theta)=\text{cos}\theta\\\text{and cos(90\degree-}\theta)=\text{sin}\theta\end{bmatrix}\\=\frac{1}{1}=1\\(\because \space\text{sin}^{2}\theta+\text{cos}^{2}\theta=1)$$

    (ii) sin 25° cos 65° + cos 25° sin 65°

    = sin 25° cos (90° – 25°) + cos 25° sin (90° – 25°)

    = sin 25° sin 25° + cos 25° cos 25°

    $$\begin{bmatrix}\because\space\text{cos(90\degree-}\theta)=\text{sin}\theta\\\text{and \space sin(90\degree-}\theta)=\text{cos}\theta\end{bmatrix}$$

    = sin2 25° + cos2 25° (∵ sin2 θ + cos2 θ = 1)

    = 1.

    4. Choose the correct option. Justify your choice. (i) 9 sec2 A – 9 tan2 A = (a) 1 (b) 9 (c) 8 (d) 0 (ii) (1 + tan θ + sec θ)(1 + cot θ – cosec θ) = (a) 0 (b) 1 (c) 2 (d) – 1 (iii) (sec A + tan A)(1 – sin A) = (a) sec A (b) sin A (c) cosec A (d) cos A $$\textbf{(iv)}\space\frac{\textbf{1}+\textbf{tan}^{2}\textbf{A}}{\textbf{1}+\textbf{cot}^{2}\textbf{A}}$$ (a) sec2 A (b) – 1 (c) cot2 A (d) tan2 A Sol. (i) (b) 9 9 sec2 A – 9 tan2 A = 9(sec2 A – tan2 A) = 9 × 1 (∵ 1 + tan2 A = sec2 A ) = 9 (ii) (c) 2 (1 + tan  θ + sec  θ)(1 + cot  θ – cosec  θ) $$=\bigg(1+\frac{\text{sin}\space\theta}{\text{sin}\space\theta}+\frac{1}{\text{cos}\theta}\bigg)\bigg(1+\frac{\text{cos}\theta}{\text{sin}\theta}-\frac{1}{\text{sin}\theta}\bigg)\\=\bigg(\frac{(\text{cos}\theta+\text{sin}\theta)+(1))}{\text{cos}\theta}\bigg)×\bigg(\frac{(\text{sin}\space\theta+\text{cos}\space\theta)-(1)}{\text{sin}\space\theta}\bigg)\\=\frac{(\text{cos}\theta+\text{sin}\theta)^{2}-(1)^{2}}{\text{cos}\theta.\text{sin}\theta}\\\lbrack\because(a+b)(a-b)=a^{2}+b^{2}\rbrack\\=\frac{\text{cos}^{2}\theta+\text{sin}^{2}\theta+2\text{cos}\theta\text{sin}\theta-1}{\text{cos}\theta\text{sin}\theta}\\\lbrack\because\space(a+b)^{2}=(a)^{2}+(b)^{2}+2ab\rbrack\\=\frac{1+2\text{cos}\theta\text{sin}\theta-1}{\text{cos}\theta\text{sin}\theta}\space(\because\text{cos}^{2}\theta+\text{sin}^{2}\theta=1)\\=\frac{2\text{cos}\theta\text{sin}\theta}{\text{cos}\theta\text{sin}\theta}=2$$ (iii) (d) cos A (sec A + tan A)(1 – sin A) $$=\bigg(\frac{1}{\text{cos A}}+\frac{\text{sin A}}{\text{cos A}}\bigg)(1-\text{sin A})\\=\frac{(1+\text{sin A})(1-\text{sin A})}{\text{cos A}}\\=\frac{1-\text{sin}^{2}\text{A}}{\text{ cos A}}$$ [∵ (a + b)(a – b) = a2 – b2] $$=\frac{\text{cos}^{2}\text{A}}{\text{cos A}}\space(\because\text{sin}^{2}\text{A}+\text{cos}^{2}\text{A}=1)$$ = cos A (iv) (d) tan2 A $$\frac{1+\text{tan}^{2}\text{A}}{1+\text{cot}^{2}\text{A}}=\frac{\text{sec}^{2}\text{A}}{\text{cosec}^{2}\text{A}}\\\begin{pmatrix}\because 1+\text{tan}^{2}\text{A}=\text{sec}^{2}\text{A}\\\text{1+cot}^{2}\text{A}=\text{cosec}^{2}\text{A}\end{pmatrix}\\=\frac{\frac{1}{\text{cos}^{2}\text{A}}}{\frac{1}{\text{sin}^{2}\text{A}}}\\=\frac{1}{\text{cos}^{2}\text{A}}×\frac{\text{sin}^{2}\text{A}}{1}\\=\frac{\text{sin}^{2}\text{A}}{\text{cos}^{2}\text{A}}\space\begin{bmatrix}\because\space\text{sec A=}\frac{1}{\text{cos A}}\\\text{cosec A = }\frac{1}{\text{sin A}}\end{bmatrix}$$ = tan2 A

    5. Prove the following identities, where the angle involved are acute angles for which the expressions are defined.

    $$\textbf{(i)\space (cosec} \theta – \textbf{cot} \theta)2=\frac{1-\textbf{cos}\theta}{1+\textbf{cos}\theta}\\\textbf{(ii)\space}\frac{\textbf{cos A}}{1+\textbf{sin A}}+\frac{\textbf{1+sin A}}{\textbf{cos A}}=2\space\textbf{sec A}\\\textbf{(iii)\space}\frac{\textbf{tan}\theta}{1-\textbf{cot}\theta}+\frac{\textbf{cot}\theta}{1-\textbf{tan}\theta}=1+\textbf{sec}\theta\space\textbf{cosec}\theta$$

    [Hint : Write the expression in terms of sin θ and cos θ]

    $$\textbf{(iv)\space}\frac{\textbf{1}+\textbf{sec A}}{\textbf{sec A}}=\frac{\textbf{sin}^{2}\textbf{A}}{\textbf{1- cos A}}\\\textbf{(v)\space}\frac{\textbf{cos A}-\textbf{sin A}+\textbf{1}}{\textbf{cos A}+\textbf{sin A}-\textbf{1}}=$$

    = cosec A + cot A

    Using the identity

    cosec2 A = 1 + cot2 A

    $$\textbf{(vi)}\space\sqrt{\frac{\textbf{1+sin A}}{\textbf{1-sin A}}}\\\textbf{= sec A + tan A}\\\textbf{(vii)\space}\frac{\textbf{sin}\theta-2\textbf{sin}^{3}\theta}{2\textbf{cos}^{3}\theta-\textbf{cos}\theta}$$

    = tan θ

    (viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

    $$\textbf{(ix) (cosec A – sin A)(sec A – cos A) =}\frac{1}{\textbf{tan A + cot A}}$$

    [Hint : Simplify LHS and RHS separately]

    $$\textbf{(x)}\space\bigg(\frac{\textbf{1+tan}^{2}\textbf{A}}{\textbf{1+cot}^{2}\textbf{A}}\bigg)=\bigg(\frac{\textbf{1-tan A}}{\textbf{1-cot A}}\bigg)^{2}=\textbf{tan}^{2}\textbf{A}$$

    Sol. (i) LHS = (cosec θ – cot θ)2

    $$=\bigg(\frac{1}{\text{sin}\theta}-\frac{\text{cos}\theta}{\text{sin}\theta}\bigg)^{2}=\bigg(\frac{\text{1-cos}\theta}{\text{sin}\theta}\bigg)^{2}\\=\frac{(1-\text{cos}\theta)^{2}}{\text{sin}^{2}\theta}=\bigg(\frac{(1-\text{cos}\theta)^{2}}{1-\text{cos}^{2}\theta}\bigg)$$

    (∵ sin2 θ + cos2 θ = 1)

    $$=\frac{(1-\text{cos}\theta)(1-\text{cos}\theta)}{(1+\text{cos}\theta)(1-\text{cos}\theta)}$$

    [∵ a2 – b2 = (a + b)(a – b)]

    $$=\frac{1-\text{cos}\theta}{1+\text{cos}\theta}=\text{R.H.S}$$

    Hence Proved.

    $$\textbf{(ii)\space}\text{L.H.S}=\frac{\text{cosA}}{1+\text{sin A}}+\frac{1+\text{sin A}}{\text{cos A}}\\=\frac{\text{cos}^{2}\text{A}+(1+\text{sin A})^{2}}{(1+\text{sin A}).\text{cos A}}\\=\frac{\text{cos}^{2}\text{A}+\text{sin}^{2}\text{A}+1+2\text{sin A}}{(1+\text{sin A}).\text{cos A}}\\\lbrack\because\space(a+b)^{2}=a^{2}+b^{2}+2ab\rbrack\\=\frac{1+1+2\text{sin A}}{(1+\text{sin A}).\text{cos A}}$$

    (∵  sin2 A + cos2 A = 1)

    $$=\frac{2+2\space\text{sin A}}{(1+\text{sin A}).\text{cos A}}\\=\frac{2(1+\text{sin A})}{(1+ \text{sin A}).\text{cos A}}\\=\frac{2}{\text{cos A}}$$

    = 2 sec A = R.H.S.

    $$\bigg[\because\space\frac{1}{\text{cos A}}=\text{sec A}\bigg]$$

    Hence Proved.

    $$\text{(iii)\space LHS}=\frac{\text{tan}\theta}{\text{1-cot}\theta}+\frac{cot\theta}{\text{1-\text{tan}}\theta}\\=\frac{\frac{\text{sin}\theta}{\text{cos}\theta}}{1-\frac{\text{cos}\theta}{\text{sin}\theta}}+\frac{\frac{\text{cos}\theta}{\text{sin}\theta}}{1-\frac{\text{sin}\theta}{\text{cos}\theta}}\\\begin{pmatrix}\because\text{tan}\theta=\frac{\text{sin}\theta}{\text{cos}\theta}\\\text{and cot}\theta=\frac{\text{cos}\theta}{\text{sin}\theta}\end{pmatrix}\\=\frac{\frac{\text{sin}\theta}{\text{cos}\theta}}{\frac{\text{sin}\theta-\text{cos}\theta}{\text{sin}\theta}}+\frac{\frac{\text{cos}\theta}{\text{sin}\theta}}{\frac{\text{cos}\theta-\text{sin}\theta}{\text{cos}\theta}}$$

    $$=\frac{\text{sin}\theta}{\text{cos}\theta}×\frac{\text{sin}\theta}{\text{sin}\theta-\text{cos}\theta}+\frac{\text{cos}\theta}{\text{sin}\theta}×\frac{\text{cos}\theta}{\text{cos}\theta-\text{sin}\theta}\\=\frac{\text{sin}^{2}\theta}{\text{cos}\theta(\text{sin}\theta-\text{cos}\theta)}-\frac{\text{cos}^{2}\theta}{\text{sin}\theta(\text{sin}\theta-\text{cos}\theta)}\\=\frac{\text{sin}^{3}\theta-\text{cos}^{3}\theta}{\text{cos}\theta.\text{sin}\theta(\text{sin}\theta-\text{cos}\theta)}\\=\frac{(\text{sin}\theta-\text{cos}\theta).(\text{sin}^{2}\theta+\text{cos}^{2}\theta+\text{sin}\theta cos\theta)}{\text{cos}\theta.\text{sin}\theta.(\text{sin}\theta-\text{cos}\theta)}$$

    [∵ a3 – b3 = (a – b)(a2 + b2 + ab)]

    $$=\frac{1+\text{sin}\theta\text{cos}\theta}{\text{cos}\theta\text{sin}\theta}\\(\because\space\text{sin}^{2}\theta+\text{cos}^{2}\theta=1)\\=\frac{1}{\text{cos}\theta.\text{sin}\theta}+\frac{\text{sin}\theta.\text{cos}\theta}{\text{sin}\theta.\text{cos}\theta}\\=\frac{1}{\text{cos}\theta.\text{sin}\theta}+1$$

    = 1 + sec θ . cosec θ = RHS

    Hence Proved.

    $$\textbf{(iv)}\space\text{LHS =}\frac{1+\text{secA}}{\text{secA}}=\frac{1+\frac{1}{\text{cos A}}}{\frac{1}{\text{cos A}}}\\\bigg(\because\text{secA}=\frac{1}{\text{cos A}}\bigg)\\=\frac{\frac{\text{cos A+1}}{\text{cos A}}}{\frac{1}{\text{cos A}}}\\\frac{\text{cos A+1}}{\text{cos A}}×\frac{\text{cos A}}{1}=\text{cos A + 1}$$

    LHS = 1 + cos A ...(i)

    $$\text{Now, RHS =}\frac{\text{sin}^{2}\text{A}}{\text{1-cos A}}=\frac{1-\text{cos}^{2}\text{A}}{\text{1-cos A}}$$

    (∵ sin2 A + cos2 A = 1)

    $$=\frac{(1+\text{cos A})(1-\text{cos A})}{(1-\text{cos A})}\\=\lbrack\because\space a^{2}-b^{2}=(a+b)(a-b)\rbrack$$

    = 1 + cos A ...(ii)

    From equations (i) and (ii), we get
    LHS

    = RHS = 1 Hence Proved.

    $$\textbf{(v)}\space\text{LHS}=\frac{\text{cos A - sin A + 1}}{\text{cos A + sin A - 1}}$$

    On dividing numerator and denominator by sin A, we get

    $$\text{LHS = }\frac{\frac{\text{cos A}}{\text{sin A}}-\frac{\text{sin A}}{\text{sin A}}+\frac{\text{1}}{\text{sin A}}}{\frac{\text{cos A}}{\text{sin A}}+\frac{\text{sin A}}{\text{sin A}}-\frac{\text{1}}{\text{sin A}}}\\\qquad=\frac{\text{cot A-1 + cosec A}}{\text{cot A+1 - cosec A}}\\=\frac{\text{cot A + cosec A- 1}}{\text{cot A+1 - cosec A}}\\=\frac{(\text{cot A + cosec A})-(\text{cosec}^{2}\text{A}-\text{cot}^{2}\text{A})}{\text{cot A + 1 - cosec A}}$$

    (∵ 1 = cosec2 A – cot2 A)

    $$\frac{(\text{cot A + cosec A})-[(\text{cosec A + cot A}) (\text{cosec A - cot A})]}{\text{cot A + 1 - cosec A}}$$

    [∵ (a2 – b2) = (a + b)(a – b)]

    $$=\frac{(\text{cot A + cosec A})[1-(\text{cosec A - cot A})]}{\text{cot A + 1 - cosec A}}$$

    $$=\frac{(\text{cot A + cosec A})[1-\text{cosec A + cot A}]}{\text{cot A + 1 - cosec A}}$$

    = cot A + cosec A = RHS

    Hence Proved.

    $$\textbf{(vi)\space}\text{LHS}=\sqrt{\frac{1+\text{sin A}}{1-\text{sin A}}}\\=\sqrt{\frac{1+\text{sin A}}{1-\text{sin A}}×\frac{1+\text{sin A}}{1+\text{sin A}}}\\\text{(on rationalisation)}\\=\sqrt{\frac{(1+\text{sin A})^{2}}{1-\text{sin}^{2}A}}\\=\sqrt{\frac{(1+\text{sin A})^{2}}{\text{cos}^{2}A}}\\(\because\space\text{sin}^{2}A + \text{cos}^{2}A=1)\\=\frac{1+\text{sin A}}{\text{cos A}}\\=\frac{1}{\text{cos A}}+\frac{\text{sin A}}{\text{cos A}}$$

    = sec A + tan A

    $$\bigg[\because\frac{1}{\text{cos A}}=\text{sec A}\space\text{and}\space\frac{\text{sin A}}{\text{cos A}}=\text{tan A}\bigg]$$

    = RHS

    Hence Proved.

    $$\textbf{(vii)}\space\text{LHS}=\frac{\text{sin}\theta-2\text{sin}^{3}\theta}{2\text{cos}^{3}\theta-\text{cos}\theta}\\=\frac{\text{sin}\theta(1-2\text{sin}^{2}\theta)}{\text{cos}\theta(2 \text{cos}^{2}\theta-1)}\\=\frac{\text{sin}\theta[1-2(1-\text{cos}^{2}\theta)]}{\text{cos}\theta(2\text{cos}^{2}\theta-1)}$$

    (∵ sin2 θ+ cos2θ  =  1)

    $$=\frac{\text{sin}\theta[1-2+2\text{cos}^{2}\theta]}{\text{cos}\theta[2\text{cos}^{2}\theta-1]}\\\frac{\text{sin}\theta(2\text{cos}^{2}\theta-1)}{\text{cos}\theta(2\space\text{cos}^{2}\theta-1)}\\=\frac{\text{sin}\space\theta}{\text{cos}\space\theta}$$

    = tan θ =RHS Hence Proved.

    (viii) LHS = (sin A + cosec A)2 + (cos A + sec A)2

    = sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2 cos A sec A

    [∵ (a + b)2 = a2 + b2 + 2ab]

    = (sin2 A + cos2 A) + (1 + cot2 A)

    $$+\text{2 sin A}.\frac{1}{\text{sin A}}+(1+\text{tan}^{2}\text{A})\\+ 2\text{cos A}.\frac{1}{\text{cos A}}$$

    [∵ sin2 A + cos2 A = 1, 1 + cot2 A = cosec2 A, 1 + tan2 A = sec2 A)

    = 1 + 1 + cot2 A + 2 + 1 + tan2 A + 2

    = 7 + tan2 A + cot2 A

    = RHS   Hence Proved.

    (ix) LHS = (cosec A – sin A)(sec A – cos A)

    $$=\bigg(\frac{1}{\text{sin A}}-\frac{\text{sin A}}{1}\bigg)\bigg(\frac{1}{\text{cos A}}-\frac{\text{cos A}}{1}\bigg)\\\bigg[\because\space\text{cosec A}=\frac{1}{\text{sin A}},\text{sec A}=\frac{1}{\text{cos A}}\bigg]\\=\bigg(\frac{1-\text{sin}^{2}\text{A}}{\text{sin A}}\bigg)\bigg(\frac{1-\text{cos}^{2}\text{A}}{\text{cos A}}\bigg)\\=\frac{\text{cos}^{2}\text{A}}{\text{sin A}}×\frac{\text{sin}^{2}\text{A}}{\text{cos A}}$$

    (∵ sin2 A + cos2 A = 1)

    = cos A sin A ...(i)

    Now,

    $$\text{RHS}=\frac{1}{\text{tan A + cot A}}\\=\frac{1}{\bigg(\frac{\text{sin A}}{\text{cos A}}+\frac{\text{cos A}}{\text{sin A}}\bigg)}\\=\frac{1}{\bigg(\frac{\text{sin}^{2}\text{A}+\text{cos}^{2}\text{A}}{\text{cos A sin A}}\bigg)}=\frac{1}{\frac{1}{\text{cos A sin A}}}$$

    (∵ sin2 A + cos2 A = 1)

    $$1×\frac{\text{cos A}\text{sin A}}{1}$$

    = cos A sin A ...(ii)

    From equations (i) and (ii), we get

    LHS = RHS

    $$\textbf{(x)\space}\text{LHS}=\bigg(\frac{1+\text{tan}^{2}\text{A}}{1+\text{cot}^{2}\text{A}}\bigg)\\=\frac{\frac{1}{1}+\frac{\text{sin}^{2}\text{A}}{\text{cos}^{2}\text{A}}}{\frac{1}{1}+\frac{\text{cos}^{2}\text{A}}{\text{sin}^{2}\text{A}}}\\\begin{bmatrix}\because\space\text{tan A}=\frac{\text{sin A}}{\text{cos A}}\\\text{and cotA =}\frac{\text{cos A}}{\text{sin A}}\end{bmatrix}\\=\frac{\frac{\text{cos}^{2}\text{A}+\text{sin}^{2}\text{A}}{\text{cos}^{2}\text{A}}}{\frac{\text{cos}^{2}\text{A}+\text{cos}^{2}\text{A}}{\text{cos}^{2}\text{A}}}=\frac{\frac{1}{\text{cos}^{2}\text{A}}}{\frac{1}{\text{sin}^{2}\text{A}}}$$

    (∵ sin2 A + cos2 A = 1)

    $$=\frac{1}{\text{cos}^{2}\text{A}}×\frac{\text{sin}^{2}\text{A}}{1}\\=\frac{\text{sin}^{2}\text{A}}{\text{cos}^{2}\text{A}}=\text{tan}^{2}\text{A}\\= \text{RHS}$$

    Second part :

    $$\bigg(\frac{\text{1-\text{tan A}}}{1-\text{cot A}}\bigg)^{2}=\bigg(\frac{1-\frac{\text{sin A}}{\text{cos A}}}{1-\frac{\text{cos A}}{\text{sin A}}}\bigg)^{2}$$

    $$\begin{bmatrix}\because\space\text{tan A}=\frac{\text{sin A}}{\text{cos A}}\\\text{and cot A}=\frac{\text{cos A}}{\text{sin A}}\end{bmatrix}\\=\begin{pmatrix}\frac{\frac{\text{cos A-sin A}}{\text{cos A}}}{\frac{\text{sin A-cos A}}{\text{sin A}}}\end{pmatrix}^{2}\\=\bigg(\frac{\text{cos A-sin A}}{\text{cos A}}×\frac{\text{sin A}}{\text{sin A - cos A}}\bigg)^{2}\\=\bigg(-1×\frac{\text{sin A}}{\text{cos A}}\bigg)^{2}$$

    = (– tan A)2 = tan2 A = RHS

    Hence Proved.

    Share page on