Oswal Model Specimen Papers ICSE Class 10 Mathematics Solutions (Specimen Paper - 8)

Section-A

1. (i) (c) ₹ 1,050

Explanation :    

Let the price of the article be ₹ x.

So, x + GST = 1,239

⇒ x + 18% of x = 1,239

$$\Rarr\space x + \frac{18 x}{100} = 1,239\\\Rarr\space \frac{118x}{100} = 1,239$$

⇒ x = ₹ 1,050

$$\textbf{(ii)\space}\text{(b)\space -2}\sqrt{6}$$

Explanation :    

3x2 + mx + 2 = 0

$$\sqrt{\frac{2}{3}}\space\text{is a solution of the equation.}$$

So,

$$3×\bigg(\sqrt{\frac{2}{3}}\bigg)^{2} + m×\sqrt{\frac{2}{3}} +2 =0\\ 3×\frac{2}{3} +m\sqrt{\frac{2}{3}}+2 = 0\\ m\sqrt{\frac{2}{3}} = \normalsize-4\\\Rarr\space m =\frac{-4\sqrt{3}}{\sqrt{2}}\\\Rarr\space m =-2\sqrt{6}$$

$$\text{(iii)\space (c)}\frac{1}{3}$$

Explanation :    

Let, p(x) = x3 – ax2 + 2x + a – 1

(x – a) is a factor of p(x).

∴ a is the zero of p(x).

∴ p(x = a) = 0

⇒ (a3) – a(a2) + 2a + a – 1 = 0

⇒ a3 – a3 + 3a – 1 = 0

⇒ 3a – 1 = 0

$$\Rarr\space a =\frac{1}{3}$$

$$\text{(iv)\space (a)}\begin{bmatrix}3 &3\\\normalsize-1 &0\end{bmatrix}$$

Explanation :    

Given,

$$\text{A =}\begin{bmatrix}5 &3\\\normalsize-1 &2\end{bmatrix}\\\text{We know}\\\text{I =}\begin{bmatrix}1 &0\\0 &1\end{bmatrix}$$

∴ Required matrix = A – 2I

$$=\begin{bmatrix}5 &3\\\normalsize-1 &2\end{bmatrix}- 2\begin{bmatrix}1 &0\\0 &1\end{bmatrix}\\=\begin{bmatrix}5 &3\\\normalsize-1 &2\end{bmatrix}-\begin{bmatrix}2 &0\\\normalsize0 &2\end{bmatrix}\\=\begin{bmatrix}5-2 &3-0\\-1-0 &2-2\end{bmatrix}\\\text{A - 2I}=\begin{bmatrix}3 &3\\\normalsize-1 &0\end{bmatrix}$$

(v) (c) 945

Explanation :    

List of first 14 natural numbers, where each number is divisible by 9 is :

9, 18, 27, .................. .

Clearly, this list forms an A. P.

∴ First term of A.P. (a) = 9

Common difference (d) = 9

We know,

$$\text{S}_{n}=\frac{n}{2}[2a +(n-1)d]\\\text{S}_{14}=\frac{14}{2}[2×9 + (14-1)×9]$$

= 7[18 + 117]

= 945

∴ Required sum = 945

(vi) (d) (2, – 1)

Explanation :    

8ds_math_m1(vi)

(vii) (b) 6 cm

Explanation :    

In ΔADE and ΔABC,

∠ADE = ∠ABC [Corresponding angles]

∠A = ∠A [Common angle]

∴ ΔADE ~ ΔABC [AA similarity rule]

$$\therefore\space \frac{\text{AD}}{\text{AB}}=\frac{\text{AE}}{\text{AC}}\\\Rarr\space \frac{2}{6}=\frac{\text{AE}}{9}$$

⇒ AE = 3 cm

∴ CE = AC – AE

= 9 – 3 = 6 cm.

(viii) (a) 2

Explanation :    

$$\text{Inequality 7 – 3x}\geq\bigg(\frac{\normalsize-1}{2}\bigg)\\\Rarr\space -3x\geq\frac{\normalsize-1}{2}-7\\\Rarr\space -3x\geq\frac{\normalsize-15}{2}\\\Rarr\space x\leq\frac{15}{6}$$

⇒ x ≤ 2.5

∴ Greatest value of x = 2

(ix) (d) 8

Explanation :    

No. of possible outcomes n(S) = n(HHH, HHT, HTH, HTT, THH, THT, TTH, TTT)

= 8.

(x) (c) 154 cm2

Explanation :    

Area of circular base = πr2

$$=\frac{22}{7}×(7)^{2}$$

= 22 × 7

= 154 cm2.

(xi) (d) 2

Explanation :    

$$\begin{bmatrix}x-2y &5\\3 &y\end{bmatrix}=\begin{bmatrix}6 &5\\3 &\normalsize-2\end{bmatrix}$$

Comparing, we get

y = –2

and x – 2y = 6

⇒ x – 2(–2) = 6

⇒ x + 4 = 6

⇒ x = 6 – 4 = 2

(xii) (b) y = 2x

Explanation :    

Let the equation be y = mx + c

As the slope is 2, y = 2x + c

As it is passing through (1,2), substituting this in the given equation

2 = 2 × 1 + c

⇒ c = 0 Hence, the equation is y = 2x

(xiii) (b) 120°

Explanation :    

 reflex ∠AOC = 360° – 120° = 240°

since, the angle subtended at the centre by an arc of a circle is double the angle which this arc subtends at any remaining part of the circumference.

∴ reflex ∠AOC = 2 × ∠ABC

$$\Rarr\space \angle\text{ABC}=\frac{1}{2}\text{reflex}\space\angle\text{AOC}\\=\frac{1}{2}×240\degree =1 20\degree.$$

(xiv) (c) Mode

(xv) (c) Both A and B are true

Explanation :    

First 100 natural numbers divisible by 5 are 5, 10, 15, 20, ...

The above series is an A.P. with a = 5, d = 10 – 5 = 5 and n = 100.

$$\text{S}_{n}=\frac{n}{2}[2a + (n-1)d]\\=\frac{100}{2}[2×5 + (100-1)× 5]$$

= 50 × 505 = 25250.

2. (i) Since, money deposited = ₹1,000 per month i.e. P = ₹1,000 and number of months = 2 12 = 24 i.e., n = 24 and r = 6%

(i) Interest earned in 2 years

$$=\text{P}×\frac{n(n+1)}{2×12}×\frac{r}{100}\\= 1000×\frac{24(24+1)}{2×12}×\frac{6}{100}\\=₹ 1,500.\space\textbf{Ans.}$$

(ii) Matured value = Sum deposited + Interest

= ₹ (1,000 × 24) + ₹1,500

= ₹ 25,500.  Ans.

$$\text{(ii)}\space (a)\space\text{Given,}\space\frac{7m + 2n}{7m - 2n}=\frac{5}{3}$$

Using componendo and dividendo,

$$\frac{(7m + 2n) + (7m - 2n)}{(7m + 2n)-(7m - 2n)}\\=\frac{5 + 3}{5-3}\\\Rarr\space \frac{7m + 7m}{2n + 2n}=\frac{8}{2}\\\Rarr\space \frac{14m}{4m}=\frac{4}{1}\\\Rarr\space\frac{7m}{2n} =\frac{4}{1}\\\Rarr\space \frac{m}{n}=\frac{4}{1}×\frac{2}{7}$$

⇒ m : n = 8 : 7 Ans.

$$\text{(b)}\space\frac{m}{n}=\frac{8}{7}\\\Rarr\space \frac{m^{2}}{n^{2}}=\frac{64}{49}$$

Using componendo and dividendo,

$$\frac{m^{2} + n^{2}}{m^{2} - n^{2}}=\frac{64 + 49}{64 -49}\\=\frac{113}{15}$$

(iii) (cosec θ – sin θ)(sec θ – cos θ) (tan θ + cot θ) = 1

∴ L.H.S. = (cosec θ – sin θ)(sec θ – cos θ) (tan θ + cot θ)

$$=\bigg(\frac{1}{\text{sin}\space\theta} -\text{sin}\theta\bigg)\bigg(\frac{1}{\text{cos}\theta}-\text{cos}\theta\bigg)\\\bigg(\frac{\text{sin}\space\theta}{\text{cos}\space\theta} + \frac{\text{cos}\space\theta}{\text{sin}\space\theta}\bigg)\\=\bigg(\frac{\text{1 - sin}^{2}\space\theta}{\text{sin}\space\theta}\bigg)\bigg(\frac{\text{1 - cos}^{2}\theta}{\text{cos}\theta}\bigg)\\\bigg(\frac{\text{sin}^{2}\theta +\text{cos}^{2}\theta}{\text{sin}\theta \text{cos}\theta}\bigg)\\=\frac{\text{cos}^{2}\theta}{\text{sin}\theta}×\frac{\text{sin}^{2}\theta}{\text{cos}\theta}×\frac{1}{\text{sin}\theta cos\theta}\\\lbrack\because\space \text{sin}^{2}\theta +\text{cos}^{2}\theta =1\rbrack\\=\frac{\text{sin}^{2}\theta\text{cos}^{2}\theta}{\text{sin}^{2}\theta\text{cos}^{2}\theta}$$

= 1 = R.H.S. Hence Proved.

3. (i) Given,

Radius of sphere = 10 cm = R

Radius of cylinder = 5 cm = r

∴ Height of cylinder = 10 cm = h

Volume of shaded region = Volume of sphere – Volume of cylinder

$$\text{Volume of sphere =}\frac{4}{3}\pi R^{3}\\=\frac{4}{3}\pi(10)^{3}$$

= 1333·33 π cm3

Volume of cylinder = πr2h

= π (5)2 × 20

= 500π cm3

Now, Volume of shaded region

= 1333·33 π – 500 π

= 833·33 π

= 833·33 × 3·14

= 2616·65 cm3 Ans.

Hence, the volume of the shaded region is 2616·65 cm3. Ans.

(ii) For Point P :

(x1, y1) = A(– 2, 6), (x2, y2) = B(3, – 4) and m1 : m2 = 2 : 3.

∴ Using section formula,

$$\text{P} =\begin{pmatrix}\frac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}},\frac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}\end{pmatrix}\\=\begin{pmatrix}\frac{2×3 + 3×(\normalsize-2)}{2 + 3},\frac{2×(\normalsize-4 + 3×6)}{2 +3}\end{pmatrix}\\=\bigg(\frac{6-6}{5},\frac{-8 + 18}{5}\bigg)\\=\bigg(0,\frac{10}{5}\bigg)$$

= (0, 2)

For the required line :

$$m =\frac{3}{2}\space\text{and (x}_{1},y_{1})\\=\text{P(0,2)}$$

Equation of a line is given as,

y – y1 = m(x – x1)

$$\Rarr\space y-2 =\frac{3}{2}(x-0)$$

⇒ 2y – 4 = 3x i.e., 3x – 2y + 4 = 0 Ans.

(iii) Steps of construction :

(i) Draw a line AB = 5 cm.

(ii) Mark a point C on AB such that AC = 3 cm.

(iii) Draw a perpendicular bisector of AC.

(iv) Mark a point O perpendicular bisector from A of length 2·5 cm.

(v) Taking O as centre and OA as radius draw a circle, which is the required circle.

(vi) Join O and B.

(vii) Draw a circle with OB as diameter which cuts the given circle at points P and Q.

(viii) Join PB and QB, which are the required tangents. QB = PB = 3 cm.

Here, length of tangents is 3 cm.

Section-B

4. (i) When the product is sold from Agra to Kanpur (intra - state transaction) :

For dealer in Agra :

S.P. = ₹20,000

CGST = 9% of ₹20,000 = ₹1,800

SGST = 9% of ₹20,000 = ₹1,800

When product is sold from Kanpur to Jaipur (inter- state transaction):

For the dealer in Kanpur :

Input tax credit = ₹1,800 + ₹1,800 = ₹3,600

C.P. = ₹20,000 and Profit = ₹5,000

S.P. = ₹20,000 + ₹5,000 = ₹25,000

IGST = 18% of 25,000 = ₹4,500

Net GST paid by the dealer at Kanpur

= Output GST – Input GST

= 4,500 – 3,600 = ₹900

The cost of goods/services at Jaipur

= S.P. in Kanpur + IGST

= 25,000 + 18% of 25,000

= 25,000 + 4,500 = ₹ 29,500 Ans.

(ii) Given equation is,

(k + 1)x2 – 4kx + 9 = 0

Here, a = (k + 1), b = – 4k, c = 9

For real and equal roots,

D = b2 – 4ac = 0

⇒ (– 4k)2 – 4(k + 1)9 = 0

⇒ 16k2 – 36(k + 1) = 0

⇒ 16k2 – 36k – 36 = 0

Dividing both sides by 4, we get

4k2 – 9k – 9 = 0

⇒ 4k2 – 12k + 3k – 9 = 0

⇒ 4k(k – 3) + 3(k – 3) = 0

⇒ (k – 3)(4k + 3) = 0

⇒ k = 3 or

$$k =-\frac{3}{4}$$

For k = 3, the equation will be

4x2 – 12x + 9 = 0

⇒ 4x2 – 6x – 6x + 9 = 0

⇒ 2x(2x – 3) – 3(2x – 3) = 0

⇒ (2x – 3)2 = 0

$$\Rarr\space x =\frac{3}{2},\frac{3}{2}\\\text{For k = –}\frac{3}{4},\\\space\text{the equation will be}$$

$$\bigg(-\frac{3}{4} + 1\bigg)x^{2} -\\ 4\bigg(\frac{\normalsize-3}{4}\bigg)x + 9 = 0\\\Rarr\space \frac{1}{4}x^{2} +3x+ 9 = 0$$

⇒ x2 + 12x + 36 = 0

⇒ x(x + 6) + 6(x + 6) = 0

⇒ (x + 6)2 = 0

⇒ x = – 6, – 6.

$$\text{Hence}\space x =\frac{3}{2},-6\space\textbf{Ans.}$$

(iii) On graph

Marks 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100
f 5 11 10 20 28 37 40 29 14 6
c.f. 5 16 26 46 74 111 151 80 194 200
8ds_math_m4

$$\text{(i)\space Median} =\bigg(\frac{n}{2}\bigg)^{\text{th}}\space\\\text{observation}\\=\bigg(\frac{200}{2}\bigg)^{\text{th}}\space\text{observation}$$

= 100th observation = 57 Ans.

(ii) No. of students who failed = 46 Ans.

(iii) No. of students who secured grade one = 200 – 186 = 14 Ans.

5. (i) We have

$$\text{X + Y} =\begin{bmatrix}5 &2\\0 &9\end{bmatrix}\\\text{and}\space\text{X - Y}=\begin{bmatrix}3 &6\\0 &\normalsize-1\end{bmatrix}$$

Now (X + Y) + (X – Y) =

$$\begin{bmatrix}5 &2\\0 &9\end{bmatrix} + \begin{bmatrix}3 &6\\0 &\normalsize-1\end{bmatrix}\\\Rarr\space 2x =\begin{bmatrix}8 &8\\0 &8\end{bmatrix}\\\Rarr\space x =\frac{1}{2}\begin{bmatrix}8 &8\\0 &8\end{bmatrix}=\begin{bmatrix}4 &4\\0 &4\end{bmatrix}$$

Also (X + Y) – (X – Y) =

$$\begin{bmatrix}5 &2\\0 &9\end{bmatrix}-\begin{bmatrix}3 &6\\0 &\normalsize-1\end{bmatrix}\\\Rarr\space 2Y =\begin{bmatrix}2 &\normalsize-4\\0 &10\end{bmatrix}\\\Rarr\space \text{Y}=\frac{1}{2}\begin{bmatrix}2 &\normalsize-4\\0 &10\end{bmatrix} =\begin{bmatrix}1 &\normalsize-2\\0 &5\end{bmatrix}$$

Thus,

$$\text{x}=\begin{bmatrix}4 &4\\0 &4\end{bmatrix}\text{and Y}=\begin{bmatrix}1 &\normalsize-2\\0 &5\end{bmatrix}.$$ Ans.

(ii) Given, ∠SRT = 65° and SP is tangent

∠TSR = 90°

[Angle between the radius and tangent]

∴ ∠SRT + ∠STR = ∠TSR = 90°

⇒ ∠STR = 90°– ∠SRT

∴ ∠STR = x° = 90° – 65° = 25°

∠y° = 2∠x°

[Angle subtended at the centre is double that of the angle subtended by the arc at same circle]

8ds_math_m5(ii)

∴ ∠y° = 2 × 25° = 50°

and ∠SPO = ∠OSP – ∠SOP

∴ ∠SPO = ∠z = 90° – 50° = 40°

Hence, ∠x = 25°, ∠y = 50° and ∠z = 40°. Ans.

(iii) Given expression is 2x3 – x2 – px – 2 and x – 2 is the factor.

(a) Put x – 2 = 0 ⇒ x = 2 in expression, we get

2(2)3 – (2)2 – p(2) – 2 = 0

⇒ 16 – 4 – 2p – 2 = 0

⇒ 10 – 2p = 0

⇒ p = 5 Ans.

(b) Putting the value of p, the expression becomes 2x3 – x2 – 5x – 2.

Dividing the expression by (x – 2),

8ds_math_m(5_iiib)

∴ 2x3 – x2 – 5x – 2 = (x – 2)(2x2 + 3x + 1)

= (x – 2) {2x2 + (2 + 1) x + 1}

= (x – 2) (2x2 + 2x + x + 1)

= (x – 2) {2x (x + 1) +1 (x + 1)}

= (x – 2) (2x + 1) (x + 1) Ans.

6. (i) Given, A(7, – 3) and B(1, 9).

$$\text{(a) Slope of AB =}\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\=\frac{9-(\normalsize-3)}{1-7}=\frac{12}{\normalsize-6} =-2\\\textbf{Ans.}$$

(b) Slope of perpendicular bisector of AB (m) =

$$-\frac{1}{(\normalsize-2)}=\frac{1}{2}$$

$$\therefore\space\text{Mid-point of AB = }\\\bigg(\frac{x_{1} + x_{2}}{2},\frac{y_{1} + y_{2}}{2}\bigg)\\=\bigg(\frac{7+1}{2},\frac{-3 +9}{2}\bigg) =(4,3)$$

Let the equation of required line be

y – y1 = m(x – x1)

$$\Rarr\space y-3=\frac{1}{2}(x-4)$$

⇒ 2y – 6 = x – 4

⇒ x – 2y – 4 + 6 = 0

⇒ x – 2y + 2 = 0,

which is the required line. Ans.

(c) Since (– 2, p) lies on x – 2y + 2 = 0

Putting x = – 2, y = p, we get

– 2 – 2p + 2 = 0

⇒ 2p = 0

⇒ p = 0 Ans.

(ii) To prove,

$$\frac{1}{\text{cos}\space\theta + \text{sin}\space\theta} + \frac{1}{\text{sin}\space\theta - \text{cos}\space\theta}\\=\frac{2\text{sin}\theta}{\text{1 - 2 cos}^{2}\theta}$$

L.H.S. =

$$\frac{1}{\text{cos}\space\theta + \text{sin}\space\theta} +\frac{1}{\text{sin}\space\theta - \text{cos}\space\theta}\\=\frac{\text{sin}\space\theta -\text{cos}\space\theta + \text{cos}\theta +\text{sin}\space\theta}{(\text{cos}\space\theta + \text{sin}\space\theta)(\text{sin}\space\theta - \text{cos}\space\theta)}\\=\frac{2\space\text{sin}\space\theta}{\text{sin}^{2}\theta - \text{cos}^{2}\theta}\\=\frac{2\text{sin}\space\theta}{1 -\text{cos}^{2}\theta - \text{cos}^{2}\theta}\\\lbrack\because\space \text{sin}^{2}\theta = 1 -\text{cos}^{2}\theta\rbrack\\=\frac{2\text{sin}\space\theta}{\text{1 - 2}\text{cos}^{2}\theta}$$

= R.H.S. Hence Proved.

(iii) (a) b + c, c + a, a + b will be in A.P.

if(c + a) – (b + c)=(a + b) – (c + a)

i.e., if a – b = b – c

i.e., if 2b = a + c

i.e., if a, b, c are in A.P.

Thus, if a, b, c are in A.P.

⇒ b + c, c + a, a + b are in A.P.

Hence Proved.

(b) Given, a, b, c are in A.P.

$$\Rarr\space\frac{a}{abc},\frac{b}{abc},\frac{c}{abc}\\\text{are in A.P.}\\\lbrack\text{on dividing each term by abc}\rbrack\\\Rarr\space\frac{1}{bc},\frac{1}{ca},\frac{1}{ab}\text{are in A.P. }\\\textbf{Hence Proved.}$$

$$\text{(c)}\space\frac{1}{\sqrt{b} + \sqrt{c}},\frac{1}{\sqrt{c} + \sqrt{a}},\\\frac{1}{\sqrt{a} + \sqrt{b}}\space\text{will be in A.P.}$$

$$\text{if}\space\frac{1}{\sqrt{c} + \sqrt{a}}-\frac{1}{\sqrt{b} +\sqrt{c}}\\=\frac{1}{\sqrt{a} + \sqrt{b}}-\frac{1}{\sqrt{c} +\sqrt{a}}\\\text{i.e., if}\frac{\sqrt{b}- \sqrt{a}}{(\sqrt{c} + \sqrt{a})(\sqrt{b} + \sqrt{c})}\\=\frac{\sqrt{c}-\sqrt{b}}{(\sqrt{a} + \sqrt{b})(\sqrt{c} + \sqrt{a})}\\\text{i.e., if}\space\frac{\sqrt{b} -\sqrt{a}}{\sqrt{b} + \sqrt{c}}\\=\frac{\sqrt{c} - \sqrt{b}}{\sqrt{b} + \sqrt{a}}$$

i.e., if b – a = c – b

i.e., if 2b = a + c

i.e., if a, b, c are in A.P. Hence Proved.

7. (i) Given, Distance = 400 km.

Car A travels x km/litre.

Car B travels (x + 5) km/litre.'

(i) Number of litre used by car A =

$$\frac{\text{Distance}}{\text{Speed of car A}}=\frac{400}{x}\text{litre}$$

Number of litre used by car B =

$$\frac{\text{Distance}}{\text{Speed of car B}}=\frac{400}{x + 5}\text{litre}.$$

(ii) Car A uses 4 litre more than car B

$$\therefore\space\frac{400}{x} - \frac{400}{x + 5} = 4$$

⇒ 400 (x + 5) – 400x = 4x(x + 5)

⇒ 400x + 2000 – 400x = 4x2 + 20x

⇒ 4x2 + 20x – 2000 = 0

⇒ 4 (x2 + 5x – 500) = 0

⇒ x2 + 25x – 20x – 500 = 0

⇒ x (x + 25) – 20 (x + 25) = 0

⇒ (x + 25) (x – 20) = 0

∴ x = – 25 (not acceptable)

or x = 20

Number of litre of petrol used by car B

$$=\frac{400}{20 +5} =\frac{400}{25}=16$$

Ans.

(ii)

Marks No. of Students c.f.
0 – 10 5 5
10 – 20 11 16
20 – 30 10 26
30 – 40 20 46
40 – 50 28 74
50 – 60 37 111
60 – 70 40 151
70 – 80 29 180
80 – 90 14 194
90 – 100 6 200

∴ N = 200 [even]

$$\text{(a)\space}\text{Median} =\frac{\text{N}}{2}\text{th value}$$

= 100th value

= 57 marks (from ogive) Ans.

(b) No. of students scoring less than 40 marks = 45. Ans.

$$\textbf{8.}\space\text{We have}-\frac{x}{3}\leq\frac{x}{2}-1\frac{1}{3}\lt\frac{1}{6},\\x\epsilon\text{R}$$

Now,

$$-\frac{x}{3}\leq\frac{x}{2}-1\frac{1}{3}\\-\frac{x}{3}\leq\frac{x}{2}-\frac{4}{3}\\\frac{4}{3}\leq\frac{x}{2} + \frac{x}{3}\\\frac{4}{3}\leq\frac{5x}{6}\\\frac{6}{5}×\frac{4}{3}\leq x\\\frac{8}{5}\leq x\space\text{...(i)}$$

$$\frac{x}{2}-1\frac{1}{3}\lt\frac{1}{6}\\\frac{x}{2}\lt \frac{1}{6} + \frac{4}{3}\\\frac{x}{2}\lt\frac{1 + 8}{6}\\x\lt\frac{9×2}{6}$$

x < 3 ...(ii)

$$\text{Thus,}\space \frac{8}{5}\leq x\lt 3$$

$$\text{or}\space 1.6\leq x\lt 3\\\therefore\space\text{Solution set =}\\\lbrace x: 1.6\leq x\leq 3, x\epsilon\ R\rbrace.$$

8ds_math_m8(i)

(ii)

Marks : Less than Classes Mid Values (x) No. of students (c.f.) Frequency (f) fx
10 0 – 10 5 2 2 10
20 10 – 20 15 7 5 75
30 20 – 30 25 15 8 200
40 30 – 40 35 18 3 105
50 40 – 50 45 20 2 90
Σf = 20 Σfx = 480

∴ Arithmetic mean =

$$\frac{\Sigma fx}{\Sigma f}=\frac{480}{20}= 24.$$ Ans.

(iii) Given, ∠ABC = ∠DAC = x (say)

AB = 8 cm, AC = 4 cm, AD = 5 cm.

(a) In ΔACD and ΔBCA

∠ABC = ∠DAC [Given]

∠ACD = ∠BCA [Common]

∴ DACD ~ DBCA [AA axiom]

Hence ΔACD is similar to ΔBCA.

Hence Proved.

(b) ΔACD ~ ΔBCA

$$\therefore\space \frac{\text{AC}}{\text{BC}} =\frac{\text{CD}}{\text{CA}}=\frac{\text{AD}}{\text{BA}}$$

[Corresponding parts of similar triangles]

$$\Rarr\space\frac{4}{\text{BC}} =\frac{\text{CD}}{4}=\frac{5}{8}\\\Rarr\space\frac{4}{\text{BC}}=\frac{5}{8}\\\Rarr\space\text{BC}= \frac{8×4}{5}=\frac{32}{5}= 6.4\space\text{cm}\\\text{and}\space \frac{\text{CD}}{4}=\frac{5}{8}\\\Rarr\space \text{CD}=\frac{5×4}{8}$$

⇒ CD = 2.5 cm. Ans.

9. (i) After removing king, queen and jack of clubs, 49 cards are left in the deck.

∴ Total number of possible outcomes = 49

(a) There are 3 kings left in the deck.

∴ Number of favourable outcomes = 3

$$\therefore\space\text{P (a king) =}\frac{3}{49}.\space\textbf{Ans.}$$

(b) After removing king, queen and jack of clubs, number of clubs cards left = 13 – 3 = 10.

∴ No. of favourable outcomes = 10

$$\therefore\space\text{P (a club) =}\frac{10}{49}.\space\textbf{Ans.}$$

(c) There is only one ‘10’ of hearts

∴ No. of favourable outcomes = 1

∴ P (a ‘10’ of hearts) =

$$\frac{1}{49}.\space\textbf{Ans.}$$

(ii) According to the question,

$$\frac{2}{3}\text{(Volume of hemisphere)}\\=\text{Volume of cone}\\\Rarr\space\frac{2}{3}\bigg(\frac{2}{3}\pi r^{3}\bigg)=\frac{1}{3}\pi r^{2}h\\\Rarr\space \frac{4}{9}(3.5)^{3} =\frac{1}{3}(3.5)^{2}.h\\\Rarr\space h =\frac{4×3.5×3.5×3.5×3}{3.5×3.5×9}\\=\frac{42.0}{9}$$

8ds_math_m9

$$=\frac{14}{3}m = 4.67 m\\\text{Slant height of cone, l} =\\\sqrt{r^{2} + h^{2}}\\=\sqrt{(3.5)^{2} + (4.67)^{2}}\\=\frac{35}{6}m$$

Now, Surface area of buoy = Surface area of right cone + Surface area of hemisphere

= πrl + 2πr2

= πr(l + 2r)

$$= \frac{22}{7}×3.5\bigg(\frac{35}{6} + 2×3.5\bigg)$$

= 11 × (5.83 + 7)

= 11 × 12.83

= 141.13 m2 Ans.

(iii) Given,

AB = 24 cm, ON = 12 cm, OM = 5 cm.

8ds_math_m9(iii)

(i) In ∠AOM, OA2 = OM2 + AM2

= (5)2 + (12)2

= 25 + 144 = 169

∴ OA = 13 cm

Thus, radius of the circle is 13 cm.

(ii) In ∠CON, OC2 = ON2 + CN2

(13)2 = (12)2 + CN2

[∵ OC = OA = 13 (Radius)]

⇒ 169 – 144 = CN2

⇒ CN2 = 25

⇒ CN = 5

Thus, length of chord CD = 2 CN

= 2 × 5

= 10 cm.

10. (i) We have,

$$\frac{x^{4} +1}{2x^{2}} =\frac{17}{8}$$

Using componendo and dividendo, we have

$$\frac{x^{4} + 1 + 2x^{2}}{x^{4} + 1 - 2x^{2}}=\frac{17 + 8}{17 -8}$$

$$\Rarr\space\frac{(x^{2})^{2} + 2.x^{2}.1 +1}{(x^{2})^{2} - 2.x^{2}.1 +1}=\frac{25}{9}\\\Rarr\space \frac{(x^{2}+1)^{2}}{(x^{2}-1)^{2}} =\frac{25}{9}\\\Rarr\space \frac{x^{2}+1}{x^{2}-1}=\frac{5}{3}$$

⇒ 5(x2 – 1) = 3(x2 + 1)

⇒ 5x2 – 5 = 3x2 + 3

⇒ 5x2 – 3x2 = 3 + 5

⇒ 2x2 = 8

⇒ x2 = 4

⇒ x = ± 2. Ans.

(ii) Steps of construction :

(i) Take BC = 10 cm.

(ii) Make ∠ABC = 45° and with centre B, cut the arc BA = 9 cm.

(iii) Join AC, so ABC is the required triangle.

(iv) With A as centre and radius = 2·5 cm, draw a circle. It will pass through D.

8ds_math_m10(ii)

(v) Draw perpendicular from D which cuts BC at E.

(vi) Draw the angle bisector of BED which cut BD at O.

(vii) Taking radius = OD, draw a circle which touches the first circle at D and also touches the line BC at F.

(viii) This is the required circle. The radius OD = 2·7 cm.

(iii) Let AB be the cliff and CD be the tower.

Also, let DB = CE = x m and AB = h m

(a) In ΔABD,

$$\text{tan}\space 60\degree =\frac{\text{AB}}{\text{DB}}\\\Rarr\space\sqrt{3}=\frac{h}{x}\\\Rarr\space h = x\sqrt{3}\space\text{...(i)}$$

And, in ΔACE,

$$\text{tan}\space 45\degree=\frac{\text{AE}}{\text{CE}}\\\Rarr\space 1 =\frac{\text{AB - BE}}{x}\\\Rarr\space 1 =\frac{h-20}{x}$$

⇒ x = h – 20 ...(ii)

Putting the value of x in equation (i), we get

$$h = (h-20)\sqrt{3}\\\Rarr\space h =\sqrt{3}h - 20\sqrt{3}\\\Rarr\space \sqrt{3}h-h = 20\sqrt{3}\\\Rarr\space h(\sqrt{3}-1) = 20\sqrt{3}\\\Rarr\space h =\frac{20\sqrt{3}}{\sqrt{3}-1}×\frac{\sqrt{3}+1}{\sqrt{3}+1}\\=\frac{20\sqrt{3}(\sqrt{3}+1)}{3-1}\\= 10(3 + \sqrt{3})$$

= 10(3 + 1.732)

= 10 × 4.732

= 47.32 m

Hence, the height of cliff is 47.32 m. Ans.

(b) Putting the value of h in equation (ii), we get

x = h – 20 = 47.32 – 20

= 27.32

Hence, the distance between the cliff and the tower is 27.32 m. Ans.

ICSE Model Specimen Paper Mathematics Class 10

All Model Specimen Paper for Class 10 Exam 2024  

Please Click on Download Now

Share page on