NCERT Solutions for Class 12 Maths Chapter 6 - Application of Derivatives - Exercise 6.4

Access Exercises of Class 12 Maths Chapter 6 Application of Derivatives

Exercise 6.1 Solutions: 18 Questions (10 Long, 6 Short, 2 MCQs)

Exercise 6.2 Solutions: 19 Questions (10 Long, 7 Short, 2 MCQs)

Exercise 6.3 Solutions: 27 Questions (14 Long, 11 Short, 2 MCQs)

Exercise 6.4 Solutions: 9 Questions (7 Short, 2 MCQs)

Exercise 6.5 Solutions: 29 Questions (15 Long, 11 Short, 3 MCQs)

Miscellaneous Exercise Solutions: 24 Questions (14 Long, 4 Short, 6 MCQs)

Exercise 6.4

1. Using differentials, find the approximate value of each of the following upto 3 places of decimal

$$\textbf{(i)}\space\sqrt{\textbf{25.3}}\space\textbf{(ii)}\space\sqrt{\textbf{49.5}}\space\textbf{(iii)}\sqrt{\textbf{0.6}}$$

(iv) (0.009)1/3 (v) (0.999)1/10 (vi) (15)1/4

(vii) (26)1/3 (viii) (255)1/4 (ix) (82)1/4

(x) (401)1/2 (xi) (0.0037)1/2 (xii) (26.57)1/3

(xiii) (81.5)1/4 (xiv) (3.968)3/2 (xv) (32.15)1/5

$$\textbf{Sol.}\space\text{(i)}\space\sqrt{25.3}\\\text{Consider f(x) =}\sqrt{x}.\space\\\text{Let x = 25 and} \Delta \text{x = 0.3}\\f'(x)=\frac{1}{2\sqrt{x}}\\\text{Now , f(x +} \Delta \text{x)} \simeq \text{f(x) + }\Delta \text{x f} '\text{(x)}\\\Rarr\space\sqrt{x+\Delta x}=\sqrt{x}+\frac{1}{2\sqrt{x}}×\Delta x\\\Rarr\space\sqrt{25.3}\simeq\sqrt{25}+\frac{0.3}{2\sqrt{25}}\\=\space 5 + \frac{0.3}{10}=5.03\\\Rarr\space \sqrt{25.3}\simeq 5.03$$

Note : The approximate value is not equal to the exact value.

$$\textbf{(ii)}\space\sqrt{49.5}\\\text{Consider f(x) =}\sqrt{x}\\\Rarr\space f'(x)=\frac{1}{2\sqrt{x}}$$

Let x = 49 and Δx = 0.5

$$\text{Now, f(x +} \Delta x)\simeq\space\text{f(x) +}\Delta x \space f'(x)\\\therefore\space \sqrt{x+\Delta x}\simeq\sqrt{x}+\frac{1}{2\sqrt{x}}×\Delta x\\\Rarr\space \sqrt{49.5}\simeq\sqrt{49}+\frac{0.5}{2\sqrt{49}}\\=7+\frac{05}{140}=7+0.036\\\Rarr\space \sqrt{49.5}\simeq 7.036$$

$$\textbf{(iii)}\space \sqrt{0.6}\\\text{Consider f(x) =}\sqrt{x}\\\Rarr\space f'(x)=\frac{1}{2\sqrt{x}}$$

Let x = 0.64 and Δx = – 0.04

$$\text{Now , f(x + Δx)} \simeq \text{f(x) + Δx f} '\text{(x)}$$

$$\Rarr\space \sqrt{x+\Delta x}\space\simeq\space\sqrt{x}+\frac{1}{2\sqrt{x}}×\Delta x\\\Rarr\space \sqrt{0.64-0.04}\simeq\sqrt{0.64}+\frac{(-0.04)}{2\sqrt{0.64}}\\=0.8-\frac{0.04}{2×0.8}$$

= 0.8 – 0.025 = 0.775

$$\Rarr\space \sqrt{0.6}\simeq0.775$$

(iv) (0.009)1/3

Consider f(x) = x1/3

$$\Rarr\space f'(x)=\frac{1}{3}x^{\normalsize -2/3}$$

Let x = 0.008 and Δx = 0.001

$$\text{Now, f(x +} \Delta \text{x)}\simeq\text{f(x) +} \Delta x f'(x)\\\Rarr\space (x+\Delta x)^{1/3}\simeq x^{1/3}+\frac{1}{3x^{2/3}}×\Delta x$$

⇒ (0.008 + 0.001)1/3

$$\simeq\space(0.008)^{1/3}+\frac{0.001}{3(0.008)^{2/3}}\\=0.2+\frac{0.001}{3[(0.2)^3]^{2/3}}\\=0.2+\frac{0.001}{3×(0.2)^2}\simeq 0.208$$

⇒ (0.009)1/3 ~ 0.208

(v) (0.999)1/10

Consider f(x) = x1/10. Let x = 1 and Δx = – 0.001

$$f'(x)=\frac{1}{10}x^{\normalsize -9/10}$$

$$\text{Now, f(x +} \Delta x)\simeq\text{f(x) +} \Delta x f'(x)\\\Rarr\space (x+\Delta x)^{1/10}\simeq x^{1/10}+\frac{1}{10x^{9/10}}×\Delta x\\\Rarr\space (1- 0.001)^{1/10}\simeq(1)^{1/10}+\frac{(-0.001)}{10(1)^{9/10}}\\=1-\frac{0.001}{10×1}$$

= 1 – 0.0001

= 0.9999

∴ (0.999)1/10 ~ 0.9999

(vi) (15)1/4

Consider f(x) = x1/4

$$\Rarr\space f'(x)=\frac{1}{4}x^{\normalsize -3/4}$$

Let x = 16 and Δx = – 1

Now, f(x + Δx) ~ f(x) + Δx f ′(x)

$$\Rarr\space (x+\Delta x)^{1/4}\simeq x^{1/4} + \frac{\Delta x}{4x^{3/4}}\\\Rarr\space (16-1)^{1/4}\simeq(16)^{1/4}+\frac{(-1)}{4(16)^{3/4}}\\=2-\frac{1}{4\lbrack[(16)^{1/4}\rbrack^{3}}\\=2-\frac{1}{4×2^{3}}$$

= 2 – 0.031 = 1.969

∴ (15)1/4 ~ 1.969

(vii) (26)1/3

Let f(x) = x1/3

$$\Rarr\space f'(x)=\frac{1}{3}x^{-2/3}$$

Let x = 27 and Δ x = – 1,

Now, f(x + Δx) ~ f(x) + Δx f ′(x)

$$\Rarr\space (x+\Delta x)^{1/3}\simeq x^{1/3}+\frac{\Delta x}{3x^{2/3}}\\\Rarr\space (27-1)^{1/3}\simeq(27)^{1/3}+\frac{(-1)}{3(27)^{2/3}}\\=3-\frac{1}{3[(27)^{1/3}]^2}\\=3-\frac{1}{3×3^2}$$

= 3 – 0.037 = 2.963

$$\Rarr\space (26)^{1/3}\simeq 2.963$$

(viii) (255)1/4

Consider f(x) = x1/4

$$\Rarr\space f'(x)=\frac{1}{4x^{3/4}}$$

Let x = 256 and Δx = – 1,

$$f'(x)=\frac{1}{4}x^{\normalsize -3/4}$$

$$\text{Now, f(x +} \Delta x)\simeq f(x)+\Delta xf'(x)\\\Rarr\space(x + \Delta x )^{1/4}\simeq x^{1/4}+\frac{\Delta x}{4x^{3/4}}\\\Rarr\space (256-1)^{1/4}\simeq (256)^{1/4} + \frac{(-1)}{4(256)^{3/4}}\\=4+\frac{-1}{4\lbrack(256)^{1/4}\rbrack^{3}}\\=4-\frac{1}{4×4^{3}}\\=4-\frac{1}{256}$$

= 4 – 0.004 = 3.996

$$\Rarr\space (255)^{1/4}\simeq 3.996$$

(ix) (82)1/4

Consider f(x) = x1/4

$$\Rarr\space f'(x)=\frac{1}{4}x^{-3/4}$$

Let x = 81 and Δx = 1

$$\text{Now , f(x +} \Delta x)\simeq f(x)+\Delta x f'(x)\\\Rarr\space (x+\Delta x)^{1/4}\simeq x^{1/4}+\frac{\Delta x}{4 x^{3/4}}\\\Rarr\space (81+1)^{1/4}\simeq (81)^{1/4}+\frac{1}{4(81)^{3/4}}\\3+\frac{1}{4\lbrack(81)^{1/4}\rbrack^{3}}\\=3+\frac{1}{4×3^3}\\=3+\frac{1}{108}$$

= 3 + 0.009 = 3.009

$$\Rarr\space (81)^{1/4}\simeq\space 3.009$$

(x) (401)1/2

$$\text{Consider f(x) =}\sqrt{x}\\\Rarr\space f'(x)=\frac{1}{2\sqrt{x}}$$

Let x = 400 and Δx = 1

$$\text{Now , f(x +} \Delta x)\simeq\text{f(x)+}\Delta x f'(x)\\\Rarr\space \sqrt{x+\Delta x}\simeq \sqrt{x} + \frac{1}{2\sqrt{x}}×\Delta x\\\Rarr\space \sqrt{400+1}\simeq\sqrt{400}+\frac{1}{2\sqrt{400}}\\=20+\frac{1}{2×20}$$

= 20 + 0.025 = 20.025

$$\Rarr\space\sqrt{401}\simeq 20.025$$

(xi) (0.0037)1/2

$$\text{Consider f(x) =}\sqrt{x}\\\Rarr\space f'(x)=\frac{1}{2\sqrt{x}}$$

Let x = 0.0036 and Δ x = 0.0001

Now , f(x + Δx) ~ f(x) + Δ xf ′(x)

$$\Rarr\space \sqrt{x+\Delta x}\simeq\sqrt{x}+\frac{1}{2\sqrt{x}}×\Delta x\\\Rarr\space \sqrt{0.0036+0.0001}\\=\sqrt{0.0036}+\frac{0.0001}{2\sqrt{0.0036}}\\=0.06+\frac{0.0001}{2×0.06}$$

= 0.06 + 0.0008 = 0.0608

$$\Rarr\space\sqrt{0.0037}\simeq

0.0608$$

(xii) (26.57)1/3

Consider f(x) = x1/3

$$\Rarr\space f'(x)=\frac{1}{3}x^{-2/3}=\frac{1}{3x^{2/3}}$$

Let x = 27 and Δx = – 0.43

$$\text{Now,}\space f(x+\Delta x )\simeq f(x)+\Delta xf'(x)\\\Rarr\space (x+\Delta x)^{1/3}\simeq x^{1/3}+\frac{1}{3x^{2/3}}×\Delta x\\\Rarr\space (27-0.43)^{1/3}=(27)^{1/3}+\frac{(-0.43)}{3(27)^{2/3}}\\=3-\frac{0.43}{3×9}\\=3-\frac{0.43}{27}$$

= 3 – 0.016 = 2.984

$$\Rarr\space (26.57)^{1/3}\simeq 2.984$$

(xiii) (81.5)1/4

Consider f(x) = x1/4

$$\Rarr\space f'(x)=\frac{1}{4}x^{\normalsize -3/4}\\=\frac{1}{4x^{3/4}}$$

Let x = 81 and Δx = 0.5

$$\text{Now,}\space f(x+\Delta x)\simeq\space f(x)+\Delta f'(x)$$

$$\Rarr\space (x+\Delta x)^{1/4}\simeq x^{1/4}+\frac{1}{4x^{3/4}}×\Delta x\\\Rarr\space (81+0.5)^{1/4}\simeq(81)^{1/4}+\frac{0.5}{4(81)^{3/4}}\\=3+\frac{0.5}{4×3^3}\\=3+\frac{0.5}{108}$$

= 3 + 0.0046 = 3.0046

$$\Rarr\space (81.5)^{1/4}\simeq 3.0046$$

(xiv) (3.968)3/2

Consider f(x) = x3/2

$$\Rarr\space f'(x)=\frac{3}{2}x^{1/2}=\frac{3}{2}\sqrt{x}$$

Let x = 4 and Δx = – 0.032

$$\text{Now,\space f(x +}\Delta x)\simeq f(x)+\Delta x f'(x)\\\Rarr\space(x+\Delta x)^{3/2}\simeq x^{3/2} + \Delta x\bigg(\frac{3}{2}\sqrt{x}\bigg)\\\Rarr\space (4-0.032)^{3/2}\simeq (4)^{3/2} + \frac{3(-0.032)}{2}\sqrt{4}$$

= 8 – 0.096 = 7.904

$$⇒ (3.968)^{3/2} \simeq 7.904$$

(xv) (32.15)1/5

Consider f(x) = x1/5

$$\Rarr\space f' (x)=\frac{1}{5}x^{-4/5}=\frac{1}{5x^{4/5}}$$

Let x = 32 and Δx = 0.15

Now , f(x + Δx) ~ f(x) + Δxf ′(x)

$$\text{Now , f(x +}\Delta x)\simeq f(x) + \Delta x f'(x)\\\Rarr\space (x + \Delta x)^{1/5}\simeq x^{1/5} + \frac{1}{5x^{4/5}}×\Delta x\\\Rarr\space (32.15)^{1/5}\simeq (32)^{1/5} + \frac{0.15}{5(32)^{4/5}}\\= 2+\frac{0.15}{5×2^4}\\=2 +\frac{0.15}{80}$$

= 2 + 0.0019 = 2.0019

$$\Rarr\space (32.15)^{1/5}\simeq 2.0019$$

2. Find the approximate value of f(2. 01), where 

f(x) = 4x2 + 5x + 2

Sol. Consider f(x) = 4x2 + 5x + 2

⇒ f ′(x) = 8x + 5

Let x = 2 and Δx = 0.01

$$\text{Also,}\space f(x+\Delta x)\simeq\space\text{f(x) + }\Delta xf ′(x)\\\therefore\space f(x+\Delta x)\simeq(4x^2+5x+2)+(8x+5)\Delta x\\\Rarr\space f(2+0.01)\simeq(4×2^{2}+5×2+2)+\\(8×2+5)(0.01)\\\text{(as x=2,}\space \Delta x=0.01)$$

= 28 + 21 × 0.01 = 28.21

$$\Rarr\space f(2.01)\simeq 28.21$$

3. Find the approximate value of f(5.001), where f(x) = x3 – 7x2 + 15.

Sol. Consider f(x) = x3 – 7x2 + 15

⇒ f ′(x) = 3x2 – 14x

Let x = 5 and Δx = 0.001

$$\text{Also, f(x +} \Delta x)\simeq\text{f(x)+}\Delta xf'(x)\\\therefore\space f(x+\Delta x)\simeq( x^3-7x^2+15)+\Delta x(3x^2-14 x)\\\Rarr\space f(5.001)\simeq (5^3-7×5^2+15)+\\(3×5^2-14×5)(0.001)\\\text{(as x=5,} \Delta x =0.001)$$

= (125 – 175 + 15) + (75 – 70)(0.001)

= – 35 + (5)(0.001)

= – 35 + 0.005

= – 34.995

4. Find the approximate change in the volume V of a cube of side x metre caused by increasing the side by 1%.

Sol. The volume (V) of a cube of side x is given by :

V = x3

$$\Rarr\space \frac{dV}{dx}=3x^2\space \text{(Differentiate w.r.t. x)}\\\text{Now, change in volume}\\\Delta V=\bigg(\frac{dV}{dx}\bigg)\space\Delta x=3x^2\Delta x$$

= 3x2(0.01x) = 0.03x3

(as Δx = 1% of x = 0.01x)

= 0.03x3 m3

5. Find the approximate change in the surface area of a cube of side x metre caused by decreasing the side by 1%.

Sol. We know that the surface area of a cube is given by

S = 6x2

$$\Rarr\space \frac{\text{dS}}{dx}=12 x\space\text{(Differentiate w.r.t. x)}\\\text{Now , change in surface area,}\\\Delta S=\bigg(\frac{dS}{dx}\bigg)\Delta x$$

= (12x)Δx = 12x(– 0.01)x

(as Δx = – 1% of x = – 0.01x)

= – 0.12x2 m2

Hence, the approximate change in the surface area of the cube is 0.12x2 m2.

Note : If the rate of change in positive, then it is increasing and if the rate of change in negative, then it is decreasing.

6. If the radius of a sphere is measured as 7 m with an error of 0.02 m, then find the approximate error in calculating its volume.

Sol. Let r be the radius of the sphere and Dr be the error in measuring radius.

Then, r = 7 cm and Δr = 0.02 m

Now , volume of a sphere is given by

$$\text{V}=\frac{4}{3}\pi r^3$$

On differentiate w.r.t. r, we get

$$\frac{dV}{dr}=\bigg(\frac{4}{3}\pi\bigg)(3r^2)\\=4\pi r^2\\\therefore\space\Delta V=\bigg(\frac{dV}{dr}\bigg)\Delta r=(4\pi r^2)\Delta r$$

= 4π× 72 × 0.02

= 3.92p m3

Hence, the aproximate error in calculating the volume is 3.92 π m3.

7. If the radius of sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating its surface area.

Sol. Let r be the radius of the sphere and Dr be the error in measuring radius.

Then, r = 9 m and Δr = 0.03 m

Now , surface area of a sphere is given by

S = 4πr2

$$\Rarr\space\frac{dS}{dr}=8\pi r\\\text{Hence,\space}\Delta S=\bigg(\frac{dS}{dr}\bigg)\Delta r=(8\pi r)\Delta r$$

= 8π × 9 × 0.03

= 2.16 π m2

Hence, the approximate error in calculating the surface area is 2.16p m3.

8. If f(x) = 3x2 + 15x + 5, then the approximate value of f(3.02) is :

(a) 47.66 (b) 57.66 (c) 67.66 (d) 77.66

Sol. (d) 77.66

Consider f(x) = 3x2 + 15x + 5

⇒ f ′(x) = 6x + 15

Let x = 3 and Δx = 0.02. Also,

$$f(x+\Delta x)\simeq f(x)+\Delta x f'(x)\\\Rarr\space f(x+\Delta x) \simeq(3x^2+15x+5)+(6x+15)\Delta x\\\Rarr\space f(3.02)\simeq(3×3^2+15×3+5)\\+(6×3+15)(0.02)$$

(as x = 3, Dx = 0.02)

= (27 + 45 + 5) + (18 + 15)(0.02)

= 77 + 33(0.02)

= 77 + 0.66

$$\Rarr\space f\text{(3.02)}\simeq 77.66$$

Hence, the approximate value of f(3.02) is 77.66.

9. The approximate change in the volume of a cube of side x metre caused by increasing the side by 3% is :

(a) 0.06x3 m3 (b) 0.6x3 m3

(c) 0.09x3 m3 (d) 0.9x3 m3

Sol. (c) 0.09x3 m3

We know that the volume V of a cube of side x is given by

V = x3

$$\Rarr\space \frac{dV}{dx}=3x^2$$

Let Δx be change in side = 3% of x = 0.03x

Now , change in volume,

$$\Delta V=\bigg(\frac{dV}{dx}\bigg)\Delta x$$

= (3x2)Δx

= (3x2)(0.03x)

(as Δx = 3% of x is 0.03x)

= 0.09x3 m3

Hence, the approximate change in the volume of the cube is 0.09x3 m3.

Share page on