NCERT Solutions for Class 12 Maths Chapter 7 - Integrals - Exercise 7.11
Exercise 7.1 Solutions 22 Questions
Exercise 7.2 Solutions 39 Questions
Exercise 7.3 Solutions 24 Questions
Exercise 7.4 Solutions 25 Questions
Exercise 7.5 Solutions 23 Questions
Exercise 7.6 Solutions 24 Questions
Exercise 7.7 Solutions 11 Questions
Exercise 7.8 Solutions 6 Questions
Exercise 7.9 Solutions 22 Questions
Exercise 7.10 Solutions 10 Questions
Exercise 7.11 Solutions 21 Questions
Miscellaneous Exercise on Chapter 7 Solutions 44 Questions
Exercise 7.11
Direction (Q. 1 to 19) : By using the properties of definite integrals, evaluate the integrals.
$$\textbf{1.\space}\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\textbf{cos}^\textbf{2}\textbf{ xdx.}\\\textbf{Sol.\space}\text{Let space I}=\int^{\frac{\pi}{2}}_{0}\text{cos}^{2}\space\text{x dx}\qquad\text{...(i)}\\\Rarr\space\text{I =}\int^{\frac{\pi}{2}}_{0}\text{cos}^{2}\bigg(\frac{\pi}{2}-x\bigg)dx\\\bigg(\because\space \int^{a}_{0}\text{f(x)dx}=\int^{a}_{0}f(a-x)dx\bigg)\\\Rarr\space\text{I}=\int^{\frac{\pi}{2}}_{0}\text{sin}^{2} xdx\qquad\text{...(ii)}$$
On adding equations (i) and (ii), we get
$$\text{2 I}=\int^{\frac{\pi}{2}}_{0}(\text{sin}^2x + \text{cos}^{2}x)dx\\=\int^{\frac{\pi}{2}}_{0} 1 dx\qquad[\because\space sin^{2}x + cos^{2}x=1]\\=[x]^{\frac{\pi}{2}}_{0}=\frac{\pi}{2}=0\Rarr\space 1=\frac{\pi}{4}$$
$$\textbf{2.\space}\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\frac{\sqrt{\textbf{sin \space x}}}{\sqrt{\textbf{sin x} + \sqrt{\textbf{cos x}}}}\textbf{dx.}\\\textbf{Sol.\space}\text{Let}\space\text{I}=\int^{\frac{\pi}{2}}_{0}\frac{\sqrt{\textbf{sin x}}}{\sqrt{\textbf{sin x}} + \sqrt{\textbf{cos x}}}dx\qquad\text{...(i)}\\\text{Then,\space}\text{I}=\\\int^{\frac{\pi}{2}}_{0}\frac{\sqrt{\text{sin}\bigg(\frac{\pi}{2}-x\bigg)}}{\sqrt{\text{sin}\bigg(\frac{\pi}{2}+x\bigg)} + \sqrt{\text{cos}\bigg(\frac{\pi}{2}-x\bigg)}}dx\\\bigg(\because\space\int^{a}_{0}f(x)dx=\int^{a}_{0}f(a-x)dx\bigg)$$
$$\Rarr\space \text{I = }\int^{\frac{\pi}{2}}_{0}\frac{\sqrt{\text{cos x}}}{\sqrt{\text{cos x} + \sqrt{\text{sin x}}}}dx\qquad\text{...(ii)}\\\begin{bmatrix}\because\space \text{sin}\bigg(\frac{\pi}{2}-x\bigg)=\text{cos x}\\\text{and cos}\bigg(\frac{\pi}{2}-x\bigg)= \text{sin x}\end{bmatrix}$$
On adding equations (i) and (ii), we get
$$\text{2I}=\int^{\frac{\pi}{2}}_{0}\frac{\sqrt{\text{sin x}}+\sqrt{\text{cos x}}}{\sqrt{\text{sin x}}+\sqrt{\text{cos x}}}dx\\=\int^{\frac{\pi}{2}}_{0}\text{1 dx}=[x]^{\frac{\pi}{2}}_{0}=\frac{\pi}{2}-0\\\Rarr\space\text{I}=\frac{\pi}{4}$$
$$\textbf{3.\space}\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\frac{\textbf{sin}^{\frac{\textbf{3}}{\textbf{2}}}\textbf{x}}{\textbf{sin}^{\frac{\textbf{3}}{\textbf{2}}}\textbf{x}+\textbf{cos}^{\frac{\textbf{3}}{\textbf{2}}}x}dx.\\\textbf{Sol.}\space \text{Let\space I}=\int^{\frac{\pi}{2}}_{0}\frac{\text{sin}^{\frac{3}{2}}}{\text{sin}^{\frac{3}{2}}x + \text{cos}^\frac{3}{2}x}dx\space\text{...(i)}\\\Rarr\space \text{I}=\\\int^{\frac{\pi}{2}}_{0}\frac{\text{sin}^{\frac{3}{2}}\bigg(\frac{\pi}{2}-x\bigg)}{\text{sin}^{\frac{3}{2}}\bigg(\frac{\pi}{2}-x\bigg)+\text{cos}^{\frac{3}{2}}\bigg(\frac{\pi}{2}-x\bigg)}dx\\\bigg(\because\space\int^{a}_{0}\text{f(x)dx}=\int^{a}_{0}f(a-x)dx\bigg)\\=\int^{\frac{\pi}{2}}_{0}\frac{\text{cos}^{\frac{3}{2}}x}{\text{cos}^\frac{3}{2}x+\text{sin}^\frac{3}{2}x}dx\space\text{...(ii)}$$
$$\begin{bmatrix}\because\space \text{sin}\bigg(\frac{\pi}{2}-x\bigg)=\text{cos x}\\\text{and cos}\bigg(\frac{\pi}{2}-x\bigg)=\text{sin x}\end{bmatrix}$$
On adding equations (i) and (ii), we get
$$\text{2I} = \int^{\frac{\pi}{2}}_{0}\frac{\text{sin}^{\frac{3}{2}x} + \text{cos}^\frac{3}{2} x}{\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x}dx\\=\int^{\frac{\pi}{2}}_{0} 1 dx\\=[x]^{\frac{\pi}{2}}_{0}=\frac{\pi}{2}-0\\\Rarr\space \text{I}=\frac{\pi}{4}$$
$$\textbf{4.\space}\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\frac{\textbf{cos}^{\textbf{5}}\textbf{x}}{\textbf{sin}^\textbf{5}\textbf{x}+\textbf{cos}^{\textbf{5}}\textbf{x}}\textbf{dx}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int^{\frac{\pi}{2}}_{0}\frac{\text{cos}^5x}{\text{sin}^5x + \text{cos}^5 x}dx\qquad\text{...(i)}\\\Rarr\space \text{I = }\\\int^{\frac{\pi}{2}}_{0}\frac{\text{cos}^5\bigg(\frac{\pi}{2}-x\bigg)}{\text{sin}^5\bigg(\frac{\pi}{2}-x\bigg) + \text{cos}^5\bigg(\frac{\pi}{2}-x\bigg)}dx\\\begin{bmatrix}\because\space\int^{a}_{0}\text{f(x)dx}=\int^{a}_{0}f(a-x)dx\end{bmatrix}\\=\int^{\frac{\pi}{2}}_{0}\frac{\text{sin}^5 x}{\text{cos}^5x + \text{sin}^5 x}dx\space\text{...(ii)}$$
On adding equations (i) and (ii), we get
$$\text{2I}=\int^{\frac{\pi}{2}}_{0}\frac{\text{cos}^5x + \text{sin}^{5}x}{\text{cos}^{5}x + \text{sin}^{5}x}dx\\=\int^{\frac{\pi}{2}}_{0} 1dx\\=[x]^{\frac{\pi}{2}}_{0}=\frac{\pi}{2}-0\Rarr \text{I}=\frac{\pi}{4}$$
$$\textbf{5.\space}\int^{\textbf{5}}_{\textbf{\normalsize-5}}\textbf{|x+2|dx}\\\textbf{Sol.}\space\text{Let}\space\text{I = }\int^{5}_{\normalsize-5}|x+2|dx$$
It can be seen that (x + 2) ≤ 0 on [– 5, – 2] and (x + 2) ≥ 0 on [– 2, 5].
$$\therefore\space\text{I}=\int^{5}_{\normalsize-5}-(x+2)dx+\int^{5}_{\normalsize-2}(x+2)dx\\\bigg[\because\space\int^{b}_{a} f(x)dx=\int^{c}_{a}f(x)dx + \int^{b}_{c}f(x)dx\bigg]\\\Rarr\space \text{I} = -\bigg[\frac{x^2}{2}+2x\bigg]^{\normalsize-2}_{\normalsize-5} + \bigg[\frac{x^2}{2}+2x\bigg]^{5}_{\normalsize-2}$$
$$=-\bigg[\frac{(\normalsize-2)^2}{2}+2(\normalsize-2)-\frac{(\normalsize-5)^2}{2}-2(-5)\bigg]+\\\bigg[\frac{(5)^2}{2}+2(5)-\frac{(-2)^2}{2}-2(-2)\bigg]\\=-\bigg[2-4-\frac{25}{2}+10\bigg]+\bigg[\frac{25}{2}+10-2+4\bigg]\\=-2+4+\frac{25}{2}-10+\frac{25}{2}+10-2+4=29$$
Note : In an absolute integral function, please careful while breaking the limit.
$$\textbf{6.\space}\int^{\textbf{8}}_{\textbf{2}}\space\textbf{|x-5|dx.}\\\textbf{Sol.\space}\text{Let\space} \text{I = }\int^{8}_{2}|x-5|dx$$
It can be seen that (x – 5) ≤ 0 on [2, 5] and (x – 5) ≥ 0 on [5, 8].
$$\because\space\int^{b}_{a}f(x)dx=\int^{c}_{a}f(x)dx+\int^{b}_{c}f(x)dx\\=\therefore\space\text{I = }\int^{5}_{2}\lbrace-(x-5)dx + \int^{8}_{5}(x-5)dx\rbrace\\=\bigg[5x-\frac{x^2}{2}\bigg]^{5}_{2}+\bigg[\frac{x^2}{2}-5x\bigg]^{8}_{5}\\=\bigg[\bigg(25-\frac{25}{2}\bigg)-\bigg(10-\frac{4}{2}\bigg)\bigg]+\\\bigg[\bigg(\frac{64}{2}-40\bigg)-\bigg(\frac{25}{2}-25\bigg)\bigg]\\=\frac{25}{2}-8-8+\frac{25}{2}$$
= 25 – 16 = 9
$$\textbf{7.}\space\int^{\textbf{1}}_{\textbf{0}}\textbf{x(1-x)}^\textbf{n} \textbf{dx.}\\\textbf{Sol.\space}\text{Let}\space \text{I} = \int^{1}_{0}x(1-x)^n dx\\\Rarr\space\text{I}=\int^{1}_{0}(1-x)\lbrace1-(1-x)\rbrace^n dx\\\bigg[\because\space\int^{a}_{0}f(x)dx=\int^{a}_{0}f(a-x)dx\bigg]\\=\int^{1}_{0}(1-x)x^n dx=\int^{1}_{0}(x^n-x^{n+1})dx\\=\bigg[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\bigg]^{1}_{0}=\bigg[\frac{1}{n+1}-\frac{1}{n+2}\bigg]-0\\=\frac{(n+2)-(n+1)}{(n+1)(n+2)}=\frac{1}{(n+1)(n+2)}$$
$$\textbf{8.\space}\int^{\frac{\pi}{\textbf{4}}}_{\textbf{0}}\textbf{log}\textbf{(1+tan x) dx}\\\textbf{Sol.\space}\text{Let}\space\text{I}=\int^{\frac{\pi}{4}}_{0}\text{log}(1 + \text{tan\space x} )dx\space\text{...(i)}\\\Rarr\space\text{I}=\int^{\frac{\pi}{4}}_{0}\text{log}\bigg[1 + \text{tan}\bigg(\frac{\pi}{4}-x\bigg)\bigg]dx\\\bigg[\because\space \int^{a}_{0}f(x)dx=\int^{a}_{0}f(a-x)dx\bigg]\\=\int^{\frac{\pi}{4}}_{0}\text{log}\bigg(1+\frac{\text{1 - tanx }}{\text{1 + tan x}}\bigg)dx\\\begin{bmatrix}\because\space\text{tan}(\text{A-B})=\frac{\text{tan A - tan B}}{\text{1 + tan A tan B}},\\\text{here A = }\frac{\pi}{4}, \text{B = x}\end{bmatrix}$$
$$=\int^{\frac{\pi}{4}}_{0}\text{log}\bigg(\frac{2}{\text{1 + tan x}}\bigg)dx\\=\int^{\frac{\pi}{4}}_{0}\lbrace\text{log 2 - log(1+tan x)}\rbrace dx\\\text{...(ii)}\\\bigg[\because\space\text{log}\bigg(\frac{m}{n}\bigg)=\text{log m - log n}\bigg]$$
On adding equations (i) and (ii), we get
$$\text{2I} = \int^{\frac{\pi}{4}}_{0}\text{log 2x}\\=\text{log 2}\int^{\frac{\pi}{4}}_{0} 1 dx = log \space 2[x]^{\frac{\pi}{4}}_{0}\\=\text{(log 2)}\bigg(\frac{\pi}{4}-0\bigg)\\\Rarr\space 2\text{I}=\frac{\pi}{4}\text{log 2}\\\Rarr\space\text{I} = \frac{\pi}{8}\text{log 2}$$
$$\textbf{9.\space}\int^{\textbf{2}}_{\textbf{0}}\textbf{x}\sqrt{\textbf{2-x}}\space\textbf{dx}\\\textbf{Sol.\space}\text{Let}\space\text{I}=\int^{2}_{0}x \sqrt{2-x}\space dx\qquad\text{...(i)}\\\text{Also,}\space\text{I}=\int^{2}_{0}(2-x)\sqrt{2-(2-x)}dx\\\bigg[\because\space\int^{a}_{0}f(x)dx=\int^{a}_{0}f(a-x)dx\bigg]\\=\int^{2}_{0}(2-x)\sqrt{x}dx=\int^{2}_{0}(2x^{\frac{1}{2}}-x^\frac{3}{2})dx\\=\bigg[\frac{2x^{(\frac{1}{2})+1}}{(\frac{1}{2})+1}-\frac{x^{(\frac{3}{2})+1}}{(\frac{3}{2})+1}\bigg]^{2}_{0}\\=\bigg[\frac{4}{3}x^{\frac{3}{2}}-\frac{2}{5}.2^{\frac{5}{2}}-0\bigg]^{2}_{0}$$
$$=\frac{4}{3}.2^{\frac{3}{2}}-\frac{2}{5}.2^{\frac{5}{2}}-0\\=\frac{4}{3}2\sqrt{2}-\frac{2}{5}4\sqrt{2}\\=\bigg(\frac{8}{3}-\frac{8}{5}\bigg)\sqrt{2}=\bigg(\frac{40-24}{15}\bigg)\sqrt{2}\\=\frac{16\sqrt{2}}{15}$$
$$\textbf{10.\space}\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}(\textbf{2 log sin x} - \textbf{log sin 2x})\textbf{dx.}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int^{\frac{\pi}{2}}_{0}(\text{2 log sin x} - \text{log} \space \text{sin 2x})dx\\=\int^{\frac{\pi}{2}}_{0}(\text{log sin}^2x - \text{log sin 2x})dx\\\lbrack\because\space\text{m log n = log n}^m\rbrack\\=\int^{\frac{\pi}{2}}_{0}\text{log}\bigg(\frac{\text{sin}^2x}{\text{sin 2x}}\bigg)dx\\\bigg[\because\space \text{log m - log n = log}\frac{m}{n}\bigg]\\=\int^{\frac{\pi}{2}}_{0}\text{log}\bigg(\frac{\text{sin}^2x}{\text{2 sin xcos x}}\bigg)dx$$
[∵ sin 2x = 2 sin x cos x]
$$=\int^{\frac{\pi}{2}}_{0}\text{log}\bigg(\frac{\text{tan x}}{2}\bigg)dx\\=\int^{\frac{\pi}{2}}_{0}\text{log}(\text{tan x})-\text{log 2}dx\\=\int^{\frac{\pi}{2}}_{0}\text{log (tan x)dx}-\int^{\frac{\pi}{2}}_{0}\text{log 2 dx}\\\Rarr\space \text{I = I}_1-(\text{log 2})[x]^{\frac{\pi}{2}}_{0}\\=\text{I}_1-\bigg(\frac{\pi}{2}-0\bigg)\text{log 2}\\=\text{I}_1-\frac{\pi}{2}\text{log 2}\qquad\text{...(i)}\\\text{where,}\space\text{I}_1=\int^{\frac{\pi}{2}}_{0}\text{log}(\text{tan x})dx\qquad\text{...(ii)}$$
$$\Rarr\space\text{I}_1=\int^{\frac{\pi}{2}}_{0}\text{log}\bigg(\text{tan}\bigg(\frac{\pi}{2}-x\bigg)\bigg)dx\\\bigg[\because\space\int^{a}_{0}f(x)dx=\int^{a}_{0}f(a-x)dx\bigg]\\\Rarr\space\text{I}_1=\int^{\frac{\pi}{2}}_{0}\text{log (cot x)}dx\qquad\text{...(iii)}$$
On adding equations (ii) and (iii), we get
$$2\text{I}_1=\int^{\frac{\pi}{2}}_{0}(\text{log}(\text{tan x}) + \text{log}(\text{cot x}))dx\\=\int^{\frac{\pi}{2}}_{0}\text{log}(\text{tan x cot x})dx\\\lbrack\because\space\text{log m + log n = log (mn)}\rbrack\\=\int^{\frac{\pi}{2}}_{0}\text{log} 1dx = 0\\\Rarr\space \text{I}_1=0\\\bigg(\because\space\text{tan x}=\frac{1}{\text{cot x}}\bigg)$$
On putting the value of I1 in eq. (i), we get
$$\text{I} = 0 - \frac{\pi}{2}\text{log 2}\\=-\frac{\pi}{2}\text{log 2}$$
$$\textbf{11.\space Let\space}\int^{\frac{\pi}{\textbf{2}}}_{-\frac{\pi}{\textbf{2}}}\textbf{sin}^{\textbf{2}}\textbf{dx}\\\textbf{Sol.\space}\text{Let}\space\text{I = }\int^{\frac{\pi}{\text{2}}}_{-\frac{\pi}{2}}\text{sin}^2 xdx$$
Here, f(x) = sin2 x
f(– x) = sin2(– x) = [sin (– x)]2
= (– sin x)2 = sin2 x = f(x)
∴ f(x) is an even function.
$$\text{I} = \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{sin}^2 xdx\\= 2\int^{\frac{\pi}{2}}_{0}\text{sin}^2 dx\\\begin{bmatrix}\because\space\int^{a}_{-a}f(x)dx=2\int^{a}_{0}f(x)dx,\\\text{if f(x) is even}\end{bmatrix}\\= 2\int^{\frac{\pi}{2}}_{0}\bigg[\frac{\text{1 - cos 2x}}{2}\bigg]dx$$
(∵ cos 2x = 1 – 2 sin2x)
$$=\int^{\frac{\pi}{2}}_{0}(1-\text{cos 2x})dx\\=\bigg[x-\frac{\text{sin 2x}}{2}\bigg]^{\frac{\pi}{2}}_{0}\\=\bigg[\frac{\pi}{2}-\frac{\text{sin}\pi}{2}\bigg]-(0-0)\\=\frac{\pi}{2}-0=\frac{\pi}{2}$$
$$\textbf{12.}\space\int^{\pi}_{\textbf{0}}\frac{\textbf{x}}{\textbf{1 + sin x}}\textbf{dx}\\\textbf{Sol.}\space\text{Let}\space\text{I} = \int^{\pi}_{0}\frac{x}{\text{1 + sin x}}dx\qquad\text{...(i)}\\\text{Then,\space I =}\int^{\pi}_{0}\frac{\pi-x}{\text{1 + sin(}\pi-x)}dx\\\bigg[\because\space \int^{a}_{0}f(x)dx = \int^{a}_{0}f(a-x)dx\bigg]\\\Rarr\space\text{I} = \int^{\pi}_{0}\frac{\pi-x}{\text{1 + sin x}}\qquad\text{...(ii)}\\\lbrack\because\space \text{sin}(\pi-x) = \text{sin \space x}\rbrack$$
On adding equations (i) and (ii), we get
$$\text{2I = }\int^{\pi}_{0}\frac{\pi}{(\text{1+ sin x})}dx\\=\pi\int^{\pi}_{0}\frac{1}{\text{(1 + sin x)}}dx\\=\pi\int^{\pi}_{0}\frac{\text{1 - sin x}}{(\text{1 + sin x})(\text{1 - sin x )}}dx$$
(Multiply numerator and denominator by (1 – sin x))
$$\text{2I}=\pi\int^{\pi}_{0}\frac{\text{1 - sin x}}{\text{1 - sin}^2x}dx\\=\pi\int^{\pi}_{0}\frac{1}{\text{cos}^2x}dx-\pi\int^{\pi}_{0}\frac{\text{sin x}}{\text{cos}^2x}dx$$
[∵ sin2 x + cos2 x = 1]
$$\Rarr\space\text{2I} = \pi\int^{\pi}_{0}\text{sec}^2x dx-\\\pi\int^{\pi}_{0}\text{sec x.tan x}dx$$
$$\Rarr\space \text{2I = }\pi[\text{tan x - sec x}]^{\pi}_{0}$$
$$\Rarr\space\text{2I = }\pi[\text{tan}\space\pi - \text{sec}\space \pi - \\(\text{tan 0 - sec 0})]\\\Rarr\space 2\text{I} = \pi[0+1-0+1]\\\Rarr\space 2\text{I}= 2\pi\Rarr\space \text{I}=\pi$$
$$\textbf{13.\space}\int^{\frac{\pi}{\textbf{2}}}_{-\frac{\pi}{\textbf{2}}}\textbf{sin}^{\textbf{7}}\textbf{x dx}\\\textbf{Sol.\space}\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{sin}^{7}\space\text{x dx}$$
Here, f(x) = sin7 x
f(– x) = sin7(– x)
= [– sin x]7 = – sin7 x
∴ f(– x) = – f(x)
So, f(x) is an odd function.
$$\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{sin}^7\space x dx=0\\\begin{bmatrix}\because\space\int^{a}_{-a}f(x)dx=0\space\\\text{if f(x) is an odd function}\end{bmatrix}\\\textbf{Note:}\space\int^{a}_{-a}f(x)dx\\ \begin{cases}\because\space\int^{2a}_{0}\text{f(x)dx,\space if f(x) is an even.}\\0,\space \text{if f(x) is an odd.}\end{cases}$$
$$\textbf{14.}\space\int^{\textbf{2}\pi}_{\textbf{0}}\textbf{cos}^\textbf{5} \textbf{x dx}\\\textbf{Sol.\space}\int^{2\pi}_{0}\text{cos}^{5}x dx= 2\int^{\pi}_{0}\text{cos}^5dx\\\because\space\int^{2a}_{0}f(x) = 2\int^{a}_{0}\text{f(x)dx,}$$
where f(2a – x) = f(x)
Hence 2a = 2x
∴ cos5 (2π – x)dx = cos5 x
= 2 × 0 = 0
$$\begin{pmatrix}\because\space\int^{2a}_{0}f(x)=0, \text{if} f(2a-x)=-f(x);\\\text{here 2a = }\pi\therefore\space\text{cos}^5(\pi-x)=-\text{cos}^5 x\end{pmatrix}$$
$$\textbf{15.\space}\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\frac{\textbf{sin x - cos x}}{\textbf{1 + sin x cos x}}\textbf{dx}\\\textbf{Sol.\space}\text{Let}\space\text{I = }\int^{\frac{\pi}{2}}_{0}\frac{\text{sin x - cos x}}{\text{1 + sinx cos x}}dx\space\text{...(i)}\\\Rarr\space\text{I} =\int^{\frac{\pi}{2}}_{0}\frac{\text{sin}\bigg(\frac{\pi}{2}-x\bigg)-\text{cos}\bigg(\frac{\pi}{2}-x\bigg)}{1 + \text{sin}\bigg(\frac{\pi}{2}-x\bigg)\text{cos}\bigg(\frac{\pi}{2}-x\bigg)}dx\\\bigg[\because\space\int^{a}_{0}\text{f(x)dx} = \int^{a}_{0} f(a-x)dx\bigg]\\=\int^{\frac{\pi}{2}}_{0}\frac{\text{cos x - sin x}}{\text{1 + cos x sin x}}\space\text{...(ii)}$$
$$\begin{bmatrix}\because\space\text{sin}\bigg(\frac{\pi}{2}-x\bigg)=\text{cos x}\\\text{and cos x}\bigg(\frac{\pi}{2}-x\bigg)=\text{sin x}\end{bmatrix}$$
On adding equations (i) and (ii), we get
$$\text{2I = }\int^{\frac{\pi}{2}}_{0}\frac{0}{\text{1 + sin x cos x}}dx=0\\\Rarr\space\text{I =0}$$
$$\textbf{16.}\space\int^{\pi}_{\textbf{0}}\textbf{log}\textbf{(1 + cos x)dx}\\\textbf{Sol.\space}\text{Let}\space \text{I}=\int^{\pi}_{0}\text{log}(1 + \text{cos x})dx\\\text{...(i)}\\\Rarr\space\text{I}=\int^{\pi}_{0}\text{log}\lbrace1 + \text{cos}(\pi-r)\rbrace dx\\\bigg[\because\space\int^{a}_{0}f(x)dx = \int^{a}_{0}f(a-x)dx\bigg]\\=\int^{\pi}_{0}\text{log}(1 - cos x)dx\\\lbrack\because\space \text{cos}(\pi-x) = -\text{cos x}\rbrack\qquad\text{...(ii)}\\=\int^{\pi}_{0}\text{log}\begin{Bmatrix}2 \text{sin}^2\bigg(\frac{x}{2}\bigg)\end{Bmatrix}dx$$
$$\bigg[\because\space 1 - cos x = 2 sin^2\frac{x}{2}\bigg]\\=\int^{\pi}_{0}\begin{Bmatrix}\text{log 2 + 2 log}\bigg(\text{sin}\frac{x}{2}\bigg)\end{Bmatrix}dx$$
[∵ log (m n2) = log m + 2 log n]
$$=\int^{\pi}_{0}\text{log 2 dx} + 2\int^{\pi}_{0}\text{log}\bigg(\text{sin}\frac{x}{2}\bigg)dx$$
In the second integral,
$$\text{put}\frac{x}{2}=t\Rarr\space dx=2 dt$$
and limits when x = 0, t = 0, and when x = π, t = π/2
$$\therefore\space\text{I = }\text{log 2}[x]^{\pi}_{0}+2\int^{\frac{\pi}{2}}_{0}\text{log(sin t)2 dt}\\=(log 2)(\pi-0) + 4\bigg(-\frac{\pi}{2}\text{log 2}\bigg)\\\bigg(\because\int^{\frac{\pi}{2}}_{0}\text{log sin x dx}=-\frac{\pi}{2}\text{log 2}\bigg)$$
= – π log 2
$$\textbf{17.\space}\int^{\textbf{a}}_{\textbf{0}}\frac{\sqrt{\textbf{x}}}{\sqrt{\textbf{x}} + \sqrt{\textbf{a-x}}}\textbf{dx.}\\\textbf{Sol.\space}\text{Let}\space\text{I} = \int^{a}_{0}\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx\space\text{...(i)}\\\text{I}=\int^{a}_{0}\frac{\sqrt{a-x}}{\sqrt{a-x} + \sqrt{a - (a-x)}}dx\\\bigg[\because\space\int^{a}_{0}\text{f(x)dx} = \int^{a}_{0}f(a-x)dx\bigg]\\=\int^{a}_{0}\frac{\sqrt{a-x}}{\sqrt{a-x} + \sqrt{x}}dx\qquad \text{...(ii)}$$
On adding equations (i) and (ii), we get
$$\Rarr\space \text{2I} = \int^{a}_{0}\frac{\sqrt{x} + \sqrt{a-x}}{\sqrt{a-x} + \sqrt{x}}dx,\\=\text{2I}=\int^{a}_{0}\space 1 dx\\=[x]^{a}_{0}=a-0=a\Rarr\space \text{I}=\frac{a}{2}$$
$$\textbf{18.\space}\int^{\textbf{4}}_{\textbf{0}}\textbf{|x-1|dx}\\\textbf{Sol.\space}\text{let}\space\text{I = }\int^{4}_{0}|x-1|dx$$
It can be seen that, (x – 1) ≤ 0 when 0 ≤ x ≤ 1 and (x – 1) ≥ 0 when 1 ≤ x ≤ 4
$$\therefore\space\text{I = }\int^{1}_{0}|x-1|dx + \int^{4}_{1}|x-1|dx\\\bigg[\because\space\int^{b}_{a}\text{f(x)dx} = \int^{c}_{a}\text{f(x)dx} +\int^{b}_{a}f(x)dx\bigg] \\=\int^{1}_{0}(1-x)dx + \int^{4}_{1}(x-1)dx \\=\bigg[x-\frac{x^2}{2}\bigg]^{1}_{0} + \bigg[\frac{x^2}{2}-x\bigg]^{4}_{1}\\=\bigg(1-\frac{1}{2}\bigg)-0 + \bigg(\frac{4^2}{2}-4\bigg)-\\\bigg(\frac{1}{2}-1\bigg)\\=\frac{1}{2} + 4+\frac{1}{2}=5$$
$$\textbf{19.\space\text{show that}}\int^{\textbf{a}}_{\textbf{0}}\textbf{f(x)g(x) dx =}\\ 2\int^{\textbf{a}}_{\textbf{0}}\textbf{f(x)dx,}\space\textbf{if f and g}$$
are defined as f(x) = f(a – x) and g(x) + g(a – x) = 4.
$$\textbf{Sol.\space}\text{Let}\space\text{I}=\int^{a}_{0}\text{f(x)g(x)dx}\space\text{...(i)}\\\Rarr\space\text{I}=\int^{a}_{0}f(a-x)g(a-x)dx\\\bigg[\because\space\int^{a}_{0}\text{f(x)dx}=\int^{a}_{0}f(a-x)dx\bigg]\\\Rarr\space\text{I = }\int^{a}_{0}f(x)\lbrace4-g(x)\rbrace dx\space\text{...(ii)}$$
[∵ f (x) = f(a – x) and g(x) + g(a – x) = 4 (given)]
On adding equations (i) and (ii), we get
$$\text{2I = }\int^{a}_{0} 4\space f(x)dx\\\Rarr\space \text{I = 2}\int^{a}_{0}\text{f(x)dx.}$$
Hence proved.
Choose the correct answer.
20. The value of
$$\int^{\frac{\pi}{\textbf{2}}}_{-\frac{\pi}{\textbf{2}}}(\textbf{x}^\textbf{3}\textbf{ + xcos x + tan}^\textbf{5}\textbf{x+1}\textbf{)dx}\space\textbf{is:}$$
(a) 0
(b) 2
(c) p
(d) 1
Sol. (c) π
$$\text{Let\space I}=\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}(x^3+x cos x + tan^{5}x+1)dx\\\Rarr\space\text{I}=\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}x^3dx + dx + \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{x cos x dx}+\\\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{tan}^{5}x dx + \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{1 dx}$$
We know that
$$\int^{a}_{-a}\text{f(x)dx} = \begin{cases} 2\int^{a}_{0}f(x)dx,\space\text{if f(x) is even}\\0,\space \text{if f(x) id odd}\end{cases}\\\therefore\space\text{I =} 0+0+0+2\int^{\frac{\pi}{2}}_{0}1 dx.$$
[∵ x3, x cos x and tan5 (x) are odd functions.]
$$\therefore\space\text{I} = 2[x]^{\frac{\pi}{2}}_{0}=\frac{2\pi}{2}=\pi.$$
$$\textbf{21. The value of}\\\space\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\textbf{log}\bigg(\frac{\textbf{4 + 3 sin x}}{\textbf{4 + 3 cos x}}\bigg)\textbf{dx}\space\textbf{is:}$$
(a) 2
$$\textbf{(b)}\space\frac{3}{4}$$
(c) zero
(d) – 2
Sol. (c) 0
$$\text{Let}\space\text{I} = \int^{\frac{\pi}{2}}_{0}\text{log}\bigg(\frac{\text{4+3 sin x}}{\text{4 + 3\space cos x}}\bigg)dx\space\\\text{...(i)}\\\Rarr\space\text{I} = \int^{\frac{\pi}{2}}_{0}\text{log}\begin{pmatrix}\frac{4 + 3\text{sin}\bigg(\frac{\pi}{2}-x\bigg)}{\text{4 + 3 cos}\bigg(\frac{\pi}{2}-x\bigg)}\end{pmatrix}dx\\\bigg[\because\space\int^{a}_{0}\text{f(x)dx =}\int^{a}_{0}\text{f(a-x)dx}\bigg]\\\Rarr\space\text{I}=\int^{\frac{\pi}{2}}_{0}\text{log}\bigg(\frac{\text{4 + 3 cos x}}{\text{4 + 3 sin x}}\bigg)dx\space\text{...(ii)}\\\begin{bmatrix}\because\space\text{sin}\bigg(\frac{\pi}{2}-x\bigg)= cos x\\\text{and cos}\bigg(\frac{\pi}{2}-x\bigg)=\text{sin x}\end{bmatrix}$$
On adding equations (i) and (ii), we get
$$\text{2I = }\int^{\frac{\pi}{2}}_{0}\begin{bmatrix}\text{log}\bigg(\frac{4 + 3\space sin\space x }{\text{4 + 3 cos x}}\bigg)+\\\text{log}\bigg(\frac{\text{4 + 3 cos x}}{\text{4 + 3 sin x}}\bigg)\end{bmatrix}dx\\\Rarr\space\text{2I} = \int^{\frac{\pi}{2}}_{0}\text{log}\begin{pmatrix}\frac{4 + 3 \space sin x}{4 + 3\space cos x}×\frac{\text{4 + 3 cos x}}{4 + 3\space sin x}\end{pmatrix}dx\\\lbrack\because\space \text{log m + log n = log mn}\rbrack\\\Rarr\space\text{2I} = \int^{\frac{\pi}{2}}_{0}\text{log 1 dx}\\\Rarr\space \text{2I =}\int^{\frac{\pi}{2}}_{0}0 dx\space (\because log\space 1 =0)$$
$$\Rarr\space\text{I = 0.}$$
Share page on
NCERT Solutions Class 12 Mathematics
- Chapter 1 Relations and Functions
- Chapter 2 Inverse Trigonometric Functions
- Chapter 3 Matrices
- Chapter 4 Determinants
- Chapter 5 Continuity and Differentiability
- Chapter 6 Application of Derivatives
- Chapter 7 Integrals
- Chapter 8 Applications of the Integrals
- Chapter 9 Differential Equations
- Chapter 10 Vectors
- Chapter 11 Three-Dimensional Geometry
- Chapter 12 Linear Programming
- Chapter 13 Probability
CBSE CLASS 12 NCERT SOLUTIONS
- NCERT Solutions Class 12 English Core
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Business Studies
- NCERT Solutions Class 12 Mathematics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Geography
- NCERT Solutions Class 12 History
- NCERT Solutions Class 12 Political Science
CBSE CLASS 12 SYLLABUS
- CBSE Class 12 English core Syllabus
- CBSE Class 12 Mathematics Syllabus
- CBSE Class 12 Physics Syllabus
- CBSE Class 12 Chemistry Syllabus
- CBSE Class 12 Biology Syllabus
- CBSE Class 12 Accountancy Syllabus
- CBSE Class 12 Business Studies Syllabus
- CBSE Class 12 Economics Syllabus
- CBSE Class 12 History Syllabus
- CBSE Class 12 Geography Syllabus
- CBSE Class 12 Political science Syllabus
- CBSE Class 12 Sociology Syllabus
- CBSE Class 12 Psychology Syllabus
- CBSE Class 12 Physical education Syllabus
- CBSE Class 12 Applied mathematics Syllabus
- CBSE Class 12 History of Indian Arts Syllabus
CBSE CLASS 12 Notes
- CBSE Class 12 Physics Notes
- CBSE Class 12 Chemistry Notes
- CBSE Class 12 Biology Notes
- CBSE Class 12 Maths Notes
- CBSE Class 12 Accountancy Notes
- CBSE Class 12 Business Studies Notes
- CBSE Class 12 Economics Notes
- CBSE Class 12 History Notes
- CBSE Class 12 Geography Notes
- CBSE Class 12 Political Science Notes