NCERT Solutions for Class 12 Maths Chapter 7 - Integrals - Exercise 7.2
Exercise 7.1 Solutions 22 Questions
Exercise 7.2 Solutions 39 Questions
Exercise 7.3 Solutions 24 Questions
Exercise 7.4 Solutions 25 Questions
Exercise 7.5 Solutions 23 Questions
Exercise 7.6 Solutions 24 Questions
Exercise 7.7 Solutions 11 Questions
Exercise 7.8 Solutions 6 Questions
Exercise 7.9 Solutions 22 Questions
Exercise 7.10 Solutions 10 Questions
Exercise 7.11 Solutions 21 Questions
Miscellaneous Exercise on Chapter 7 Solutions 44 Questions
Exercise 7.2
Direction (Q.1 to 37) Integrate the following functions.
$$\textbf{1.}\space\frac{\textbf{2x}}{\textbf{1+x}^\textbf{2}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{2x}{1+x^2}dx$$
Let 1 + x2 = t
On differentiating w.r.t. x, we get
2x dx = dt
$$\Rarr\space dx=\frac{dt}{2x}\\\therefore\space\text{I}=\int\frac{2x}{t}\frac{dt}{2x}=\int\frac{1}{t}dt$$
= log |t| + C
= log |1 + x2| + C
$$\textbf{2.}\space\frac{\textbf{(log x)}^\textbf{2}}{\textbf{x}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{\text{(log\space x)}^\text{2}}{\text{x}}\space\text{dx}$$
Let log x = t
On differentiating w.r.t. x, we get
$$\frac{1}{x}=\frac{dt}{dx}\\\Rarr\space dx=x dt\\\therefore\space\text{I}=\int\frac{1}{x(t)}xdt=\int t^2dt=\frac{t^3}{3}+\text{C}\\=\frac{(log\space x)^3}{3}+\text{C}$$
$$\textbf{3.}\space\frac{\textbf{1}}{\textbf{x + x log x}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{1}{x(1+\text{log x})}dx$$
Let 1 + log x = t
On differentiating w.r.t. x, we get
$$\frac{1}{x}=\frac{dt}{dx}\\\Rarr\space dx=x dt\\\therefore\space \text{I}=\int\frac{1}{x(t)}x dt=\int\frac{1}{t}dt$$
= log |t| + C
= log |1 + log x| + C.
4. sin x sin (cos x)
Sol. Let I = ∫ sin x sin (cos x) dx
Let cos x = t
On differentiating w.r.t. x, we get
$$-\text{sin x}=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{-\text{sin x}}\\\therefore\space \text{I}=\int\text{sin x sin(t)}\frac{dt}{-\text{sin x}}$$
= – ∫ sin t dt = – [– cos t] + C
= cos (cos x) + C
5. sin (ax + b) cos (ax + b)
Sol. Let I = ∫ sin (ax + b) cos (ax + b) dx
Let sin (ax + b) = t
On differentiating w.r.t. x, we get
$$a\space\text{cos}(ax+b)=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{a \text{cos}(ax+b)}\\\therefore\space\text{I}=\int\space\text{t cos(ax+b)}\space\frac{dt}{\text{a cos}(ax+b)}\\=\frac{1}{a}\int t dt=\frac{1}{a}.\frac{t^2}{2}+\text{C}\\=\frac{[\text{sin}(ax+b)]^2}{2a}+\text{C}$$
$$\textbf{6}.\sqrt{\textbf{ax+b}}\\\textbf{Sol.}\space\int\sqrt{ax+b}\space dx=\int(ax+b)^{1/2}dx\\\bigg[\because\space\int(ax+b)^n dx=\frac{(ax+b)^{n+1}}{a(n+1)}\bigg]\\=\frac{(ax+b)^{(1/2)+1}}{a\bigg(\frac{1}{2}+1\bigg)}+\text{C}\\=\frac{(ax+b)^{3/2}}{a\bigg(\frac{3}{2}\bigg)}+\text{C}\\=\frac{2}{3a}(ax+b)^{3/2}+\text{C}$$
$$\textbf{7.}\space \textbf{x}\sqrt{\textbf{x+2}}\\\textbf{Sol.}\space\int x\sqrt{x+2}dx\\=\int(x+2-2)\sqrt{x+2}\space dx\\=\int(x+2)\sqrt{x+2}dx-2\int\sqrt{x+2}\space dx\\=\int(x+2)^{3/2}dx-2\int(x+2)^{1/2}dx\\=\frac{(x+2)^{(3/2)+1}}{(3/2)+1}-2\frac{(x+2)^{(1/2)+1}}{(1/2)+1}+\text{C}\\\bigg[\because\space\int x^ndx=\frac{x^{n+1}}{n+1}\bigg]$$
$$=\frac{2}{5}(x+2)^{5/2}-\frac{2×2}{3}(x+2)^{3/2}+\text{C}\\=\frac{2}{5}(x+2)^{5/2}-\frac{4}{3}(x+2)^{3/2}+\text{C}$$
Alternate Method
Let x + 2 = t or x = (t – 2)
$$\Rarr\space 1=\frac{dt}{dx}\Rarr dx=dt\\\text{Then,}\space\int x\sqrt{x+2}dx=\int(t-2)\sqrt{t}\space dt\\=\int(t^{3/2}-2 t^{1/2})dt\\=\frac{t^{(3/2)+1}}{(3/2)+1}-2\frac{t^{(1/2)+1}}{(1/2)+1}+\text{C}\\=\frac{2}{5}t^{5/2}-\frac{4}{3}t^{3/2}+\text{C}\\=\frac{2}{5}(x+2)^{5/2}-\frac{4}{3}(x+2)^{3/2}+\text{C}$$
$$\textbf{8.\space} \textbf{x}\sqrt{\textbf{1+2x}^\textbf{2}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int x\sqrt{1+2x^2}dx$$
Let 1 + 2x2 = t
On differentiating w.r.t. x, we get
$$4x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{4x}\\\therefore\space \text{I}=\int x\sqrt{t}\frac{dt}{dx}=\frac{1}{4}\int\sqrt{t}\space dt\\\frac{1}{4}\int t^{1/2}dt\\=\frac{1}{4}\frac{t^{(1/2)+1}}{(1/2)+1}+\text{C}\\=\frac{1}{6}(1+2x^2)^{3/2}+\text{C}$$
Note : In the given type of integrals, it is better to substitute the root functions so that it may be converted into a standard integral.
$$\textbf{9.}\space\textbf{(4x+2)}\space\sqrt{\textbf{x}^\textbf{2}\textbf{+x+1}}\\\textbf{Sol.}\space\text{I}=\int(4x+2)\sqrt{x^2+x+1}\space dx.$$
Let x2 + x + 1 = t
On differentiating w.r.t. x, we get
$$2x+1=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{(2x+1)}\\\therefore\space\text{I}=\int(4x+2)\sqrt{t}\frac{dt}{(2x+1)}\\=\int2(2x+1)\sqrt{t}\frac{dt}{(2x+1)}\\=2\int\sqrt{t} dt\\=2\frac{t^{(1/2)+1}}{(1/2)+1}+\text{C}\\=\frac{4}{3}(x^2+x+1)^{3/2}+\text{C}$$
$$\textbf{10.}\space\frac{1}{x-\sqrt{x}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{1}{x-\sqrt{x}}dx\\=\int\frac{1}{\sqrt{x}(\sqrt{x}-1)}dx\\\text{Let}\space\sqrt{x}-1=t\\\Rarr\space \frac{1}{2\sqrt{x}}=\frac{dt}{dx}\\\Rarr\space dx=2\sqrt{x}\space dt\\\therefore\space\text{I}=\int\frac{1}{\sqrt{x}t}2\sqrt{x}dt\\=\int\frac{2}{t}dt$$
$$=2.\text{log}|t|+\text{C}\\=2\space\text{log}|\sqrt{x}-1|+\text{C}$$
$$\textbf{11.}\space\frac{\textbf{x}}{\sqrt{\textbf{x+4}}},\space \textbf{x}\gt \textbf{0}\\\textbf{Sol.}\space\int\frac{x}{\sqrt{x+4}}dx\\=\int\frac{x+4-4}{\sqrt{x+4}}dx\\=\int\frac{x+4}{\sqrt{x+4}}dx-4\int\frac{1}{\sqrt{x+4}}dx\\=\int(x+4)^{1/2}dx-4\int(x+4)^{-1/2}dx\\=\frac{(x+4)^{(1/2)+1}}{(1/2)+1}-4\frac{(x+4)^{\frac{-1}{2}+1}}{(-1/2)+1}+\text{C}\\=\frac{2}{3}\space(x+4)^{3/2}-8(x+4)^{1/2}+\text{C}$$
12. (x3 – 1)1/3 x5.
Sol. Let I = ∫(x3 – 1)1/3 x5dx = ∫(x3 – 1)1/3 x3 . x2dx
Let x3 – 1 = t
$$\Rarr\space x^3= t+1$$
Differentiating w.r.t. x, we get
$$3x^2=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{3x^2}\\\therefore\space \text{I}=\int t^{1/3}(t+1)x^2\frac{dt}{3x^2}\\=\frac{1}{3}\int(t^{4/3}+t^{1/3})dt\\=\frac{1}{3}\bigg[\frac{t^{7/3}}{\frac{7}{3}}+\frac{t^{4/3}}{\frac{4}{3}}\bigg]+\text{C}\\=\frac{1}{3}\bigg[\frac{3}{7}t^{7/3}+\frac{3}{4}t^{4/3}\bigg]+\text{C}\\=\frac{1}{7}t^{7/3}+\frac{1}{4}t^{4/3}+\text{C}$$
$$=\frac{1}{7}(x^3-1)^{7/3}+\frac{1}{4}(x^3-1)^{4/3}+\text{C}$$
$$\textbf{13.}\space \frac{\textbf{x}^\textbf{2}}{\textbf{(2+3x}^\textbf{3})^\textbf{3}}\textbf{dx}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{x^2}{(2+3x^3)^3}dx\\\text{Let}\space 2+3x^3=t\\\Rarr\space 9x^2=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{9x^2}\\\therefore\space \text{I}=\int\frac{x^2}{t^3}\frac{dt}{9x^2}=\frac{1}{9}\int\frac{1}{t^3}dt\\=\frac{1}{9}\int t^{\normalsize -3}dt=\frac{1}{9}\bigg(\frac{t^{\normalsize-3+1}}{\normalsize -3+1}\bigg)+\text{C}$$
$$=\frac{1}{9}×\frac{1}{-2}t^{\normalsize-2}+\text{C}=\frac{-1}{18t^{2}}+\text{C}\\=\frac{-1}{18(2+ 3x^3)^2}+\text{C}$$
$$\textbf{14.}\space\frac{\textbf{1}}{\textbf{x(log x)}^\textbf{m}}\textbf{dx}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{1}{x(log\space x)^m}dx\\\text{Let}\space \text{log x}=t\\\Rarr\space \frac{1}{x}=\frac{dt}{dx}\\\Rarr\space dx=x dt\\\therefore\space\text{I}=\int\frac{1}{x(t)^m}x dt=\int t^{-m}\space dt\\=\frac{t^{-m+1}}{-m+1}+\text{C}\\=\frac{(log \space x)^{1-m}}{1-m}+\text{C}$$
$$\textbf{15.}\space\frac{\textbf{x}}{\textbf{9-4x}^\textbf{2}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{x}{9-4x^2}dx\\\text{Let}\space 9-4x^2=t\\\Rarr\space -8x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{-8x}\\\therefore\space \text{I}=\int\frac{x}{t}×\frac{dt}{-8x}\\=\frac{1}{-8}\int\frac{1}{t}dt=\\\frac{1}{-8}\text{log}|t|+\text{C}$$
$$=-\frac{1}{8}\text{log}|9-4x^2|+\text{C}\\=\frac{1}{8}\text{log}\begin{vmatrix}\frac{1}{9-4x^2}\end{vmatrix}+\text{C}\\\bigg[\because\space -alog b=alog b^{\normalsize-1}= alog\frac{1}{b}\bigg]$$
16. e(2x + 3)
Sol. $$\text{Let}\space\text{I}=\int e^{(2x+3)}dx\\\text{Let}\space 2x+3=t\\\Rarr2=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{2}\\\therefore\space \text{I}=\int e^t\frac{dt}{2}=\frac{1}{2}\int e^tdt=\frac{1}{2}e^t+\text{C}\\=\frac{1}{2}e^{(2x+3)}+\text{C}$$
$$\textbf{17.}\space \frac{\textbf{x}}{\textbf{e}^{\textbf{x}^{\textbf{2}}}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{x}{e^{x^{2}}}dx\\\text{Let}\space x^2= t\Rarr\space 2x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{2x}\\\therefore\space \text{I}=\int\frac{x}{e^t}\frac{dt}{2x}=\frac{1}{2}\int e^{-t}dt\\=\frac{1}{2}e^{-t}+\text{C}\\=-\frac{1}{2}e^{\normalsize -(x^2)}+\text{C}$$
$$\textbf{18.}\space\frac{\textbf{e}^{\textbf{tan}^{\normalsize-1}\textbf{x}}}{\textbf{1+x}^\textbf{2}}\textbf{dx}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{e^{\text{tan}^{\normalsize-1}x}}{1+x^2}dx\\\text{Let}\space \text{tan}^{\normalsize-1}x=t\\\Rarr\space \frac{1}{1+x^2}=\frac{dt}{dx}$$
$$\Rarr\space dx=(1+x^2)dt\\\therefore\space \text{I}=\int\frac{e^t}{1+x^2}(1+x^2)dt$$
= ∫ etdt = et + C = etan–1 x + C
$$\textbf{19.}\space\frac{\textbf{e}^{\textbf{2x}}\textbf{-1}}{\textbf{e}^\textbf{2x}\textbf{+ 1}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{e^{2x}-1}{e^{2x}+1}dx\\=\int\frac{(e^x.e^x-1)}{e^x.e^x+1}dx\\=\int\frac{e^x\bigg(e^x-\frac{1}{e^x}\bigg)}{e^x\bigg(e^x+\frac{1}{e^x}\bigg)}dx\\=\int\frac{(e^x-e^{-x})}{(e^x+e^{-x})}dx\\\text{Let}\space e^x+e^{\normalsize -x}=t$$
$$\Rarr\space e^x-e^{-x}=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{e^x-e^{-x}}\\\therefore\space\text{I}=\int\frac{(e^x-e^{-x})}{t}×\frac{dt}{e^x-e^{-x}}\\=\int\frac{1}{t}dt=\text{log}|t|+\text{C}$$
= log|ex + e–x| + C
$$\textbf{20.}\space \frac{\textbf{e}^{\textbf{2x}}\textbf{-e}^{\textbf{-2x}}}{\textbf{e}^{\textbf{2x}}+\textbf{e}^{\textbf{-2x}}}\\\textbf{Sol.}\space \text{Let}\space \text{I}=\int\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}dx\\\text{Let}\space e^{2x }+e^{-2x}=t\\\Rarr\space 2e^{2x}-2e^{-2x}=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{2(e^{2x}+e^{-2x})}\\\therefore\space\text{I}=\frac{e^{2x}-e^{-2x}}{t}×\frac{dt}{2[e^{2x}-e^{-2x}]}\\=\frac{1}{2}\int\frac{1}{t} dt=\frac{1}{2}\text{log}|t|+\text{C}$$
$$=\frac{1}{2}\text{log}|e^{2x}+e^{\normalsize -2x}|+\text{C}$$
21. tan2(2x – 3)
Sol. Let I = tan2(2x – 3) dx
$$=\int\text{sec}^2(2x-3)dx-\int1dx\\(\because\space \text{tan}^2x=\text{sec}^2x-1)\\\text{Let 2x-3 = t}\\\Rarr\space 2 dx = dt\\\Rarr dx=\frac{1}{2}dt\\\therefore\space \text{I}=\frac{1}{2}\int(\text{sec}^2t)dt-\int 1 dx\\=\frac{1}{2}\text{tan t- x+C}\\=\frac{1}{2}\text{tan}(2x-3)-x+C\\=\frac{tan(2x-3)}{2}-x+\text{C}$$
22. sec2(7 – 4x)
Sol. Let I = sec2(7 – 4x) dx
$$\text{Let}\space 7-4x=t \\\Rarr\space -4 =\frac{dt}{dx}\\\Rarr dx=\frac{dt}{-4}\\\therefore\space \text{I}=\int\text{sec}^2t.\frac{dt}{4}\\=-\frac{1}{4}\text{tan t}+\text{C}\\=-\frac{1}{4}\text{tan}(7-4x)+\text{C}$$
$$\textbf{23.}\space \frac{\textbf{sin}^{\normalsize-1}x}{\sqrt{\textbf{1-x}^\textbf{2}}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{\text{sin}^{\normalsize-1}x}{\sqrt{1-x^2}}dx\\\text{Let \space sin}^{\normalsize-1}x=t\\\Rarr\space \frac{1}{\sqrt{1-x^2}}=\frac{dt}{dx}\\\Rarr dx=\sqrt{1-x^2}dt\\\therefore\space \text{I}=\int\frac{t}{\sqrt{1-x^2}}\sqrt{1-x^2}dt\\=\int tdt=\frac{t^2}{2}+\text{C}=\\\frac{(\text{sin}^{\normalsize-1}x)^2}{2}+\text{C}$$
$$\textbf{24.}\space \frac{\textbf{2 cos x - 3 sin x}}{\textbf{6 cos x + 4 sin x}}\\\textbf{Sol.}\space \text{Let}\space\text{I}=\int\frac{\text{2 cos x - 3 sin x}}{\text{6 cos x + 4 sin x}}dx\\=\int\frac{2\text{cos x - 3 sinx }}{2( 3cos x + 2 sin x)}dx\\\text{Let 3 cos x + 2 sin x = t}\\\Rarr\space -3 \space\text{sin x}+ 2\space \text{cos x}=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{\text{2 cos x - 3 sin x}}\\\therefore\space\text{I}=\int\frac{\text{2 cos x - 3 sin x}}{2(t)}\frac{dt}{\text{2 cos x - 3 sin x}}\\=\frac{1}{2}\int\frac{1}{t}dt=\frac{1}{2}\text{log}|t|+\text{C}$$
$$=\frac{1}{2}\space\text{log}|3 \text{cos}x + 2 sin x |+\text{C}$$
$$\textbf{25.\space}\frac{\textbf{1}}{\textbf{cos}^\textbf{2}\textbf{x}(\textbf{1 - tan x})^2}\\\textbf{Sol.}\space \text{Let}\space \text{I}=\int\frac{1}{\text{cos}^2x(1-\text{tan x})^2}dx\\=\int\frac{\text{sec}^2dx}{(1-\text{tanx})^2}dx$$
Let 1 – tan x = t
$$\Rarr\space -\text{sec}^2x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{-\text{sec}^2x}\\\therefore\space\text{I}=\int\frac{\text{sec}^2x}{t^2}\frac{dt}{(-\text{sec}^2x)}\\=-\int t^{\normalsize-2} dt=-\bigg(\frac{-t^{-2+1}}{-2+1}\bigg)+\text{C}\\=\frac{1}{t}+\text{C}\\=\frac{1}{1- tan \space x}+\text{C}$$
$$\textbf{26.}\space \frac{\textbf{cos}\sqrt{x}}{\sqrt{x}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{\text{cos}\sqrt{x}}{\sqrt{x}}dx\\\text{Let}\space\sqrt{x}= t\\\Rarr\space \frac{1}{2\sqrt{x}}=\frac{dt}{dx}\\\Rarr\space dx=2\sqrt{x}dt\\\therefore\space \text{I}=\int\frac{\text{cos t}}{\sqrt{x}} 2\sqrt{x}dt$$
= 2 ∫ cos t dt = 2 sin t + C
$$= 2\space\text{sin}\sqrt{x}+\text{C}$$
$$\textbf{27.}\sqrt{\textbf{sin 2x cos 2x}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\sqrt{\text{sin 2x}}cos 2x dx\\\text{Let}\space \text{sin 2x}=t\\\Rarr\space 2\text{cos}\space 2x =\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{\text{2 cos 2x}}\\\therefore\space \text{I}=\int\sqrt{t}\text{cos 2x}\frac{dt}{\text{2 cos 2x}}\\=\frac{1}{2}\int\sqrt{t}dt\\=\frac{1}{2}\frac{t^{1/2 +1}}{\bigg(\frac{1}{2}+1\bigg)}+\text{C}$$
$$\frac{1}{3}t^{3/2}+\text{C}\\=\frac{1}{3}(\text{sin 2x})^{3/2}+\text{C}$$
$$\textbf{28.}\space\frac{\textbf{cos x}}{\sqrt{\textbf{ 1+ sin x}}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{\text{cos x}}{\sqrt{1+ sin x}}dx\\=\int(1 + sin x)^{-1/2}\text{cos x}dx\\\text{Let\space} \text{1 + sin x = t }\\\Rarr\space \text{cos x}=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{\text{cos x}}\\\therefore\space \text{I}=\int (t)^{-1/2}\text{cos x}\frac{dt}{\text{cos x}}$$
$$=\frac{t^{(-1/2)+1}}{\bigg(-\frac{1}{2}+1\bigg)}+\text{C}\\ =2t^{1/2}+\text{C}\\=2\sqrt{ 1 + sin x}+\text{C}$$
29. cot x log sin x
$$\textbf{Sol.}\space\text{Let}\space \text{I}=\int\text{cot x log sin x dx}\\\text{Let log sin x = t}\\\Rarr\space \frac{1}{\text{sin x}}×\text{cos x}=\frac{dt}{dx}\\\Rarr\space\text{cot x}=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{\text{cot x}}\\\therefore\space \text{I}=\int \text{cot x.t}\frac{dt}{cot x}\\=\int t \space dt=\frac{t^2}{2}+\text{C}\\=\frac{(log \space sin x)^2}{2}+\text{C}$$
$$\textbf{30.}\space\frac{\textbf{sin x}}{\textbf{1 + cos x}}\\\textbf{Sol.}\space \text{Let}\space \text{I}=\int\frac{\text{sin x}}{\text{1 + cos x}}dx\\\text{Let}\space 1+\text{cos x}=t\\\Rarr\space -\text{sin x}=\frac{dt}{dx}\\\Rarr dx=\frac{dt}{-\text{sin x}}\\\therefore\space \text{I}=\int\frac{sin x}{t}×\frac{dt}{-\text{sin x}}\\=-\text{log}|t|+\text{C}\\=\text{log}\bigg|\frac{1}{1+\text{cos x}}\bigg|+\text{C}$$
$$\bigg(\because\space -\text{log a}=\text{log}\frac{1}{a}\bigg)$$
$$\textbf{31.}\space\frac{\textbf{sin x}}{\textbf{(1 + cos x )}^\textbf{2}}\\\textbf{Sol.}\space \text{Let}\space\text{I}=\int\frac{\text{sin x}}{\text{(1 + cos x)}}dx\\\text{Let 1 + cos x = t}\\\Rarr\space -\text{sin x}=\frac{dt}{dx}\\\Rarr dx=\frac{dt}{-\text{sin x}}\\\therefore\space\text{I}=\int\frac{\text{sin x}}{(1 + \text{cos x})^2}dx\\=\int\frac{\text{sin x}}{t^2}×\frac{dt}{-\text{sin x}}\\=-\int\frac{1}{t^2}\space dt$$
$$=-\int t^{-2}dt=\frac{-t^{-2+1}}{-2+1}\text{C}\\=\frac{1}{t}+\text{C}\\=\frac{1}{\text{1 + cos x}}+\text{C}$$
$$\textbf{32.}\space\frac{\textbf{1}}{\textbf{(1 + cot x)}}dx\\=\int\frac{1}{1 + \frac{\text{cos x}}{\text{sin x}}}dx\\=\int\frac{1}{\frac{\text{sin x + cos x}}{\text{sin x}}}dx\\=\int\frac{\text{sin x}}{\text{(sin x + cos x)}}dx\\=\frac{1}{2}\space\int\frac{\text{2 (sin x)}}{\text{ sin x + cos x}}dx\\=\frac{1}{2}\int\frac{\text{sin x + sin x + cos x - cos x}}{\text{sin x + cos x}}dx\\\text{[add and subtract cos x in numerator]}\\=\frac{1}{2}\int\frac{(\text{sin x + cos x}) + (\text{sin x - cos x})}{\text{(sin x + cos x)}}dx$$
$$=\frac{1}{2}\begin{bmatrix}\int\frac{\text{(sin x + cos x)}}{(\text{sin x + cos x})}dx + \int\frac{(\text{sin x - cos x})}{(\text{sin x + cos })}dx\end{bmatrix}\\=\frac{1}{2}\bigg[\int 1 dx + \int\frac{(\text{sin x - cos x})}{(\text{sin x + cos x})}dx\bigg]\\\text{Let sin x + cos x = t}\\\Rarr\space\text{cos x - sin x}=\frac{dt}{dx}\\\Rarr\space dx = \frac{dt}{-[\text{sin x - cos x}]}\\\therefore\space\text{I}=\\\frac{1}{2}\bigg[\int 1 dx + \int\frac{(\text{sin x - cos x})}{t}\frac{dt}{-[\text{sin x - cos x}]}\bigg]\\=\frac{1}{2}\bigg[\int 1 dx -\int\frac{1}{t}dt\bigg]\\=\frac{1}{2}[x- log|t|] + \text{C}$$
$$=\frac{1}{2}[ x- log|\text{sin x + cos x}|]+\text{C}$$
$$\textbf{33.}\space \frac{\textbf{1}}{\textbf{1 - tan x}}\\\textbf{Sol.}\space \text{Let}\space\text{I}=\int\frac{1}{\text{1 - tan x}}dx\\=\int\frac{1}{1-\frac{sin x}{cos x}}dx=\\\int\frac{1}{\frac{\text{cos x - sin x}}{\text{cos x}}}dx\\=\frac{1}{2}\int\frac{2 (\text{cos x})dx}{\text{(cos x - sin x)}}\\=\frac{1}{2}\int\frac{\text{cos x + cos x + sin x - sin x}}{(cos \space x - sin\space x)}dx\\\text{[add and subtract cos x in numerator]}\\=\frac{1}{2}\bigg[\int\frac{\text{(cos x - sin x)}}{(\text{ cos x - sin x})}dx +\\ \int\frac{(\text{cos x + sin x})}{(\text{ cos x - sin x})}dx\bigg]$$
$$=\frac{1}{2}\bigg[\int 1 dx + \int\frac{(\text{cos x + sin x })}{(\text{cos x - sin x})}dx\bigg]$$
Let cos x – sin x = t
$$\Rarr\space -\text{sin x - cos x}=\frac{dt}{dx}\\\Rarr\space -[\text{sin x + cos x}]=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{-[\text{sin x + cos x}]}$$
$$\therefore\space \text{I}=\\\frac{1}{2}\bigg[\int 1 dx + \int\frac{\text{cos x + sin x}}{t}\frac{dt}{-[\text{sin x + cos x }]}\bigg]$$
$$=\frac{1}{2}\bigg[\int 1 dx - \int \frac{1}{t}dt\bigg]\\=\frac{1}{2}[x -\text{log }|t|]+\text{C}\\=\frac{1}{2}[x -\text{log} |\text{cos x - sin x}|]+ \text{C}$$
$$\textbf{34.}\space \frac{\sqrt{\textbf{tan x}}}{\textbf{sin x . cos x}}\textbf{dx}.\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{\sqrt{\text{tan x}}}{\text{sin x cos x}}dx\\=\int\frac{\sqrt{\text{tan x}}}{\text{sin x cos x}×\frac{\text{cos x}}{\text{cos x}}}dx\\\begin{bmatrix}\text{Multiplying by 1} =\frac{\text{cos x}}{\text{cos x}}\\\text{in denominator}\end{bmatrix}\\=\int\frac{\sqrt{\text{tan x}}}{\text{tan x}}.\text{sec}^2 x dx\\\text{Let tan x = t}\\\Rarr\space\text{sec}^2x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{\text{sec}^2x}$$
$$\therefore\space \text{I}=\int\frac{\sqrt{t}}{t}.\text{sec}^2x\frac{dt}{\text{sec}^2x}\\=\int \frac{1}{\sqrt{t}}dt=\\\int t^{-1/2} dt=\frac{ t^{(-1/2)+1}}{\bigg(-\frac{1}{2}+1\bigg)}+\text{C}\\= \space 2\sqrt{t}+\text{C}\\= 2\sqrt{\text{tan x}}+\text{C}$$
$$\textbf{35.}\space\int \frac{(\textbf{1 + log x})^\textbf{2}}{\textbf{x}}\space \textbf{dx.}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{(\text{1 + log x})^2}{x}dx\\\text{Let}\space 1 + \text{log x}= t\\\Rarr\space\frac{1}{t}=\frac{dt}{dx}\\\Rarr\space dx= x\space dt\\\therefore\space \text{I}=\int\frac{t^2}{x} x\space dt=\int t^2dt\\=\frac{t^3}{3}+\text{C}\\=\frac{(\text{1 + log x})^3}{3}+\text{C}$$
$$\textbf{36.}\space \frac{\textbf{(x+1)(x + log x)}^\textbf{2}}{\textbf{x}}\\\textbf{Sol.}\space\text{Let}\space \text{I}=\int\frac{(x+1)(x +log x)^2}{x}dx\\=\int(x + log x)^2\bigg(\frac{x+1}{x}\bigg)dx\\=\int(x + log x)^2\space \bigg(1+\frac{1}{x}\bigg)dx\\\text{Let\space } x + \text{log x}=t \\\Rarr\space \bigg(1+ \frac{1}{x}\bigg)dx=dt\\\therefore\space\text{I}=\int t^2 dt$$
$$=\frac{t^3}{3}+\text{C}\\=\frac{(x + log x)^3}{2}+\text{C}$$
$$\textbf{37.}\space\frac{\textbf{x}^\textbf{3}\space\textbf{sin}(\textbf{tan}^{\normalsize-1}\textbf{x}^{\textbf{4}})}{\textbf{(1 + x}^\textbf{8}\textbf{)}}\textbf{dx}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{x^3\text{sin}(\text{tan}^{\normalsize-1}x^{4})}{(1 + x^{8})}dx\\\text{Let}\space \text{tan}^{\normalsize-1}x^{4}=t\\\Rarr\space \frac{1}{1+ x^8}.4x^3=\frac{dt}{dx}\\\Rarr\space dx=\frac{(1 + x^8)}{4x^3}dt\\\therefore\space \text{I}=\int\frac{x^3\text{sin t}}{(1 + x^{8})}.\frac{(1 + x^8)dt}{4x^3}\\=\frac{1}{4}\int\text{sin t dt}=-\frac{1}{4}\text{cos t} + \text{C}$$
$$=-\frac{1}{4}\text{cos}(\text{tan}^{\normalsize-1}x^4)+\text{C}$$
Choose the correct answer.
$$\textbf{38.}\space\int\bigg(\frac{\textbf{10x}^\textbf{9} \textbf{+ 10}^\textbf{x}\space\textbf{log}_e \textbf{10}}{\textbf{x}^{\textbf{10}} \textbf{+ 10}^{\textbf{x}}}\bigg)\space\\\textbf{dx equals.}$$
(a) 10x – x10 + C
(b) 10x + x10 + C
(c) (10x – x10)–1 + C
(d) log|10x + x10|+ C
Sol. (d) log|10x + x10| + C
$$\text{Let}\\\space\text{I}=\int\bigg(\frac{10x^9 + 10^x log_e10}{x^{10} +10^x}\bigg)dx\\\text{Let}\space x^{10} + 10^{x}=t\\\Rarr\space (10x^9 + 10^x log_e 10)dx=dt\\\Rarr\space dx=\frac{dt}{10x^9 + 10^x log_e\space 10}\\\therefore\space \text{I}=\int\frac{10x^9 + 10^x log_e 10}{t}×\\\frac{dt}{10x^9 + 10^x \text{log}_e 10}\\=\int\frac{dt}{t}=\text{log}|t|+\text{C}$$
= log|10x + x10| + C
$$\textbf{39.}\space\int\frac{\textbf{dx}}{\textbf{sin}^\textbf{2}\textbf{x}\textbf{cos}^\textbf{2}\textbf{x}}\space\textbf{is equal to :}$$
(a) tan x + cot x + C
(b) tan x – cot x + C
(c) tan x cot x + C
(d) tan x – cot 2x + C
Sol. (b) tan x – cot x + C
$$\text{Let I}=\int\frac{dx}{\text{sin}^2x\text{cos}^2x}\\=\int\frac{\text{sin}^2x + \text{cos}^2x}{\text{sin}^2x. \text{cos}^2x}\\\lbrack\because\space \text{sin}^2x + \text{cos}^2x=1\rbrack\\=\int\frac{\text{sin}^2x}{\text{sin}^2x.\text{cos}^2x}dx+\int\frac{\text{cos}^2x}{\text{sin}^2x.\text{cos}^2x}dx$$
$$=\int\frac{1}{\text{cos}^2x}dx+\int\frac{1}{\text{sin}^2x}dx$$
= ∫ sec2 x dx + ∫ cosec2 x dx
= tan x – cot x + C
Share page on
NCERT Solutions Class 12 Mathematics
- Chapter 1 Relations and Functions
- Chapter 2 Inverse Trigonometric Functions
- Chapter 3 Matrices
- Chapter 4 Determinants
- Chapter 5 Continuity and Differentiability
- Chapter 6 Application of Derivatives
- Chapter 7 Integrals
- Chapter 8 Applications of the Integrals
- Chapter 9 Differential Equations
- Chapter 10 Vectors
- Chapter 11 Three-Dimensional Geometry
- Chapter 12 Linear Programming
- Chapter 13 Probability
CBSE CLASS 12 NCERT SOLUTIONS
- NCERT Solutions Class 12 English Core
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Business Studies
- NCERT Solutions Class 12 Mathematics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Geography
- NCERT Solutions Class 12 History
- NCERT Solutions Class 12 Political Science
CBSE CLASS 12 SYLLABUS
- CBSE Class 12 English core Syllabus
- CBSE Class 12 Mathematics Syllabus
- CBSE Class 12 Physics Syllabus
- CBSE Class 12 Chemistry Syllabus
- CBSE Class 12 Biology Syllabus
- CBSE Class 12 Accountancy Syllabus
- CBSE Class 12 Business Studies Syllabus
- CBSE Class 12 Economics Syllabus
- CBSE Class 12 History Syllabus
- CBSE Class 12 Geography Syllabus
- CBSE Class 12 Political science Syllabus
- CBSE Class 12 Sociology Syllabus
- CBSE Class 12 Psychology Syllabus
- CBSE Class 12 Physical education Syllabus
- CBSE Class 12 Applied mathematics Syllabus
- CBSE Class 12 History of Indian Arts Syllabus
CBSE CLASS 12 Notes
- CBSE Class 12 Physics Notes
- CBSE Class 12 Chemistry Notes
- CBSE Class 12 Biology Notes
- CBSE Class 12 Maths Notes
- CBSE Class 12 Accountancy Notes
- CBSE Class 12 Business Studies Notes
- CBSE Class 12 Economics Notes
- CBSE Class 12 History Notes
- CBSE Class 12 Geography Notes
- CBSE Class 12 Political Science Notes