NCERT Solutions for Class 12 Maths Chapter 7 - Integrals - Exercise 7.4
Exercise 7.1 Solutions 22 Questions
Exercise 7.2 Solutions 39 Questions
Exercise 7.3 Solutions 24 Questions
Exercise 7.4 Solutions 25 Questions
Exercise 7.5 Solutions 23 Questions
Exercise 7.6 Solutions 24 Questions
Exercise 7.7 Solutions 11 Questions
Exercise 7.8 Solutions 6 Questions
Exercise 7.9 Solutions 22 Questions
Exercise 7.10 Solutions 10 Questions
Exercise 7.11 Solutions 21 Questions
Miscellaneous Exercise on Chapter 7 Solutions 44 Questions
Exercise 7.4
Integrate the following functions.
$$\textbf{1.}\space\frac{\textbf{3x}^\textbf{2}}{\textbf{x}^\textbf{6}\textbf{+1}}\\\textbf{Sol.}\space \text{Let}\space \text{I}=\int\frac{3x^2}{x^6+1}dx\\=\int\frac{3x^2}{(x^3)^2+1}dx\\\text{Let \space} x^3=t\\\Rarr\space 3x^2=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{3x^2}\\\therefore\space \text{I}=\int\frac{3x^2}{t^2+1}.\frac{dt}{3x^2}\\=\int\frac{dt}{t^2+1}$$
$$=\frac{1}{1}\text{tan}^{\normalsize-1}\bigg(\frac{t}{1}\bigg)+\text{C}\\=\text{tan}^{\normalsize-1}(x^3)+\text{C}$$
$$\textbf{2.}\space\frac{\textbf{1}}{\sqrt{\textbf{1+ 4x}^\textbf{2}}}\textbf{.}\\\textbf{Sol.}\space\int\frac{dx}{\sqrt{1+4x^2}}=\int\frac{dx}{\sqrt{4\bigg(\frac{1}{2}\bigg)^2 + x^2}}\\=\frac{1}{2}\int\frac{dx}{\sqrt{x^2 + \bigg(\frac{1}{2}\bigg)^2}}\\=\frac{1}{2}\text{log}\begin{vmatrix}x+\sqrt{x^2 + \bigg(\frac{1}{2}\bigg)^2}\end{vmatrix}+\text{C}\\\bigg(\because\space\int\frac{1}{\sqrt{x^2+a^2}}dx=\text{log}|x + \sqrt{x^2 + a^2}|\bigg)$$
$$=\frac{1}{2}\text{log}\begin{vmatrix}x + \frac{\sqrt{4x^2+1}}{2}\end{vmatrix}+\text{C}\\=\frac{1}{2}\text{log}|2x + \sqrt{4x^2+1}|-\frac{1}{2}\text{log 2} + \text{C}\\\bigg[\because\space\text{log}\bigg(\frac{m}{n}\bigg)=\text{log m - log n}\bigg]\\=\frac{1}{2}\text{log}|2x + \sqrt{4x^2+1}|+\text{C}\\\bigg(\because\space\frac{1}{2}\text{log 2 is constant + constant = C}\bigg)$$
$$\textbf{3.}\space\frac{1}{\sqrt{(2-x)^2+1}}\\\textbf{Sol.}\space\int\frac{1}{\sqrt{(2-x)^2+1}}dx\\=\int\frac{1}{\sqrt{(x-2)^2+1^2}}dx\\=\text{log}|(x-2) + \sqrt{(x-2)^2+1}+\text{C}|\\\bigg[\because\space \int\frac{dx}{\sqrt{x^2 + a^2}}=\text{log}|x+\sqrt{x^2+a^2}|\bigg]$$
$$\textbf{4.}\space\frac{\textbf{1}}{\sqrt{\textbf{9-25}}\textbf{x}^\textbf{2}}\\\textbf{Sol.}\space\int\frac{1}{\sqrt{9-25}x^2}dx\\=\int\frac{1}{\sqrt{25\bigg[\bigg(\frac{3}{5}\bigg)^2 - x^2\bigg]}}dx\\=\frac{1}{5}\int\frac{1}{\sqrt{\bigg[\bigg(\frac{3}{5}\bigg)^2-x^2\bigg]}}dx\\=\frac{1}{5}\text{sin}^{\normalsize-1}\bigg(\frac{x}{\frac{3}{5}}\bigg)+\text{C}$$
$$\bigg[\because\space\int\frac{dx}{\sqrt{a^2-x^2}}=\text{sin}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]\\=\frac{1}{2}\text{sin}^{\normalsize-1}\bigg(\frac{5x}{3}\bigg)+\text{C}$$
$$\textbf{5.\space}\frac{\textbf{3x}}{\textbf{1+2x}^\textbf{4}}\\\textbf{Sol.}\space\int\frac{3x}{1+2x^4}dx\\=\frac{3}{2}\int\frac{xdx}{\frac{1}{2} + x^4}\\=\frac{3}{2}\int\frac{x dx}{\frac{1}{2} + (x^2)^2}\\\text{Let\space x}^2=t\\\Rarr\space 2x=\frac{dt}{dx}\\\Rarr dx=\frac{dt}{2x}\\\therefore\space\frac{3}{2}\int\frac{xdx}{\frac{1}{2} + (x^2)^2}=\frac{3}{2}\int\frac{x}{\frac{1}{2} + (t)^2}\frac{dt}{2x}$$
$$=\frac{3}{2}\int\frac{dt}{t^2 + \bigg(\frac{1}{\sqrt{2}}\bigg)^2}\\=\frac{3}{4}×\frac{1}{\frac{1}{\sqrt{2}}}\text{tan}^{\normalsize-1}\bigg(\frac{t}{\frac{1}{\sqrt{2}}}\bigg)+\text{C}\\\bigg[\because\space\int\frac{dx}{a^2 + x^2}=\frac{1}{a}\text{tan}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]\\=\frac{3}{2\sqrt{2}}\text{tan}^{\normalsize-1}(\sqrt{2} x^2)+\text{C}\\(\because\space t=x^2)$$
$$\textbf{6.}\space\frac{\textbf{x}^\textbf{2}}{\textbf{1-x}^\textbf{6}}.\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{x^2}{1-x^6}dx\\=\int\frac{x^2}{1-(x^3)^2}dx\\\text{Let}\space x^3=t\\\Rarr\space 3x^2=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{3x^2}\\\therefore\space \text{I}=\int\frac{x^2}{1-t^2}×\frac{dt}{3x^2}\\=\frac{1}{3}\int\frac{dt}{1-t^2}$$
$$=\frac{1}{3}.\frac{1}{2}\text{log}\begin{vmatrix}\frac{1+t}{1-t}\end{vmatrix}+\text{C}\\\bigg[\because\space\int\frac{dx}{a^2-x^2}=\frac{1}{2a}\text{log}\begin{vmatrix}\frac{\text{a+x}}{\text{a-x}}\end{vmatrix}\bigg]\\=\frac{1}{6}\space\text{log}\begin{vmatrix}\frac{1+x^3}{1-x^3}\end{vmatrix}+\text{C}\\(\because\space t=x^3)$$
$$\textbf{7.\space}\frac{\textbf{x-1}}{\sqrt{\textbf{x}^\textbf{2}\textbf{-1}}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{x-1}{\sqrt{x^2-1}}dx\\=\int\frac{x}{\sqrt{x^2-1}}dx-\int\frac{x}{\sqrt{x^2-1}}dx$$
= I1 – I2
$$\text{Now,}\space\text{I}_1=\int\frac{x}{\sqrt{x^2-1}}dx,\\\text{Let x}^2-1=t\\\Rarr 2x=\frac{dt}{dx}\Rarr\space dx=\frac{dt}{2x}\\\therefore\space\text{I}_1=\int\frac{x}{\sqrt{t}}\frac{dt}{2x}=\frac{1}{2}\int\frac{dt}{\sqrt{t}}\\=\frac{1}{2}\int t^{\frac{1}{2}}dt\\=\frac{1}{2}\bigg[\frac{t^{1/2}}{1/2}\bigg]+\text{C}_1\\=\sqrt{t}+\text{C}_1\\=\sqrt{x^2-1}+\text{C}_1\\(\because\space t= x^2-1)$$
$$\text{Now,}\space\text{I}_2=\int\frac{1}{\sqrt{x^2-1}}dx\\=\text{log}|x+\sqrt{x^2-1}|+\text{C}_2\\\bigg[\because\space\int\frac{dx}{\sqrt{x^2-a^2}}=\text{log}|x + \sqrt{x^2-a^2}|\bigg]$$
On putting the values of I1 and I2 in Eq. (i), we get
$$\int\frac{x-1}{\sqrt{x^2-1}}dx=\\\sqrt{x^2-1}-\text{log}|x+\sqrt{x^2-1}|+\text{C}$$
(where, C = C1 – C2)
$$\textbf{8.}\space\frac{\textbf{x}^\textbf{2}}{\sqrt{\textbf{x}^\textbf{6} \textbf{+ a}^\textbf{6}}}\\\textbf{Sol.}\space\int\frac{\text{x}^\text{2}}{\sqrt{x^6+a^6}}dx\\=\int\frac{x^2}{\sqrt{(x^3)^2 + a^6}}dx\\\text{Let}\space x^2=t\\\Rarr\space 3x^2=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{3x^2}\\\therefore\space\int\frac{x^2}{\sqrt{(x^3)^2 + a^6}}dx\\=\int\frac{x^2}{\sqrt{t^2 + a^2}}\frac{dt}{3x^2}$$
$$=\frac{1}{3}\int\frac{dt}{\sqrt{t^2 + (a^3)^2}}\\=\frac{1}{3}\text{log}|t+\sqrt{t^2 + a^6}|+\text{C}\\\bigg[\because\space\int\frac{dx}{\sqrt{x^2+a^2}}=\text{log}|x+\sqrt{x^2+a^2}|\bigg]\\=\frac{1}{3}\text{log}|x^3 +\sqrt{x^6 + a^6}|+\text{C}\\(\because\space t=x^3)$$
$$\textbf{9.}\space\frac{\textbf{sec}^\textbf{2}\textbf{x}}{\sqrt{\textbf{tan}^\textbf{2}\textbf{x + 4}}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{\text{sec}^2x}{\text{tan}^2x + 4}dx\\\text{Let}\space\text{tan x = t}\\\Rarr\space\text{sec}^2x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{\text{sec}^2x}\\\therefore\space\int\frac{\text{sec}^2x}{\sqrt{tan^2x +4}}dx\\=\int\frac{\text{sec}^2x}{\sqrt{t^2+4}}\frac{dt}{\text{sec}^2x}\\=\int\frac{dt}{\sqrt{t^2 + 2^2}}$$
$$=\text{log}|t+\sqrt{t^2 + 4}|+\text{C}\\\bigg[\because\space\int\frac{8x}{\sqrt{x^2 + a^2}}=\text{log}|x + \sqrt{x^2 + a^2}|\bigg]\\=\text{log}|\text{tan x} + \sqrt{\text{tan}^2x+4}| +\text{C}$$
(∵ t = tan x)
$$\textbf{10.}\space\frac{\textbf{1}}{\sqrt{\textbf{x}^\textbf{2}\textbf{ + 2x+2}}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{1}{\sqrt{x^2+2x+2}}dx\\=\int\frac{1}{(x^2 + 2x+1)+1}dx\\=\int\frac{1}{\sqrt{(x+1)^2}+1}dx$$
$$\text{Let x + 1 = t}\Rarr\space dx=dt\\\therefore\space\text{I}=\int\frac{1}{\sqrt{t^2+1}}dt=\text{log}|t + \sqrt{t^2+1}|+\text{C}\\\bigg[\because\space\int\frac{dx}{x^2+a^2}=\text{log}|x+\sqrt{x^2+a^2}|\bigg]\\=\text{log}|(x+1) + \sqrt{(x+1)^2+1}+\text{C}|\\\Rarr\space\text{log}|(x+1) +|\sqrt{x^2+2x+2}+\text{C}\\(\because\space t=x+1)$$
$$\textbf{11.}\space\frac{\textbf{1}}{\textbf{ax}^\textbf{2}\textbf{+ 6x + 5}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{1}{9x^2 + 6x+5}dx\\=\frac{1}{9}\int\frac{1}{x^2+\frac{2}{3}x+\frac{5}{9}}dx\\=\frac{1}{9}\int\frac{1}{x^2+2.\frac{1}{3}.x+\bigg(\frac{1}{3}\bigg)^2 + \frac{5}{9}-\bigg(\frac{1}{3}\bigg)^2}dx\\=\frac{1}{9}\int\frac{1}{x^2 + \frac{2}{3}x+\bigg(\frac{1}{3}\bigg)^2 + \frac{5}{9}-\frac{1}{9}}dx\\=\frac{1}{9}\int\frac{1}{\bigg(x +\frac{1}{3}\bigg)^2 +\bigg(\frac{2}{3}\bigg)^2}dx$$
$$=\frac{1}{9}\bigg(\frac{1}{\frac{2}{3}}\bigg)\text{tan}^{\normalsize-1}\space\bigg(\frac{x+\frac{1}{3}}{\frac{2}{3}}\bigg)+\text{C}\\\bigg[\because\space\int\frac{dx}{a^2+x^2}=\frac{1}{a}\text{tan}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]\\=\frac{1}{6}\text{tan}^{\normalsize-1}\bigg(\frac{3x+1}{2}\bigg)+\text{C}$$
$$\textbf{12.}\space\frac{\textbf{1}}{\sqrt{\textbf{7 - 6x - x}^\textbf{2}}}\\\textbf{Sol.}\space\text{Let \qquad I}=\int\frac{1}{\sqrt{7-6x-x^2}}dx\\=\int\frac{1}{\sqrt{7-(x^2+6x)}}dx\\=\int\frac{1}{\sqrt{7-[x^2+2×3x+(3)^2-(3)^2]}}dx\\ =\int\frac{1}{\sqrt{7-[x^2 + 6x + 3^2-9]}}dx\\=\int\frac{1}{\sqrt{7-[(x+3)^2-9]}}dx\\=\int\frac{1}{\sqrt{4^2 - (x+3)^2}}dx$$
$$\text{Let\space x+3=t}\\\Rarr\space dx=dt\\\therefore\space \text{I}=\int\frac{1}{\sqrt{4^2-t^2}}dt\\=\text{sin}^{\normalsize-1}\bigg(\frac{t}{4}\bigg)+\text{C}\\\bigg[\because\space \int\frac{dx}{\sqrt{a^2-x^2}}=\text{sin}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]\\=\text{sin}^{\normalsize-1}\bigg(\frac{x+3}{4}\bigg)+\text{C}\\(\because\space t= x+3)$$
$$\textbf{13.}\space\frac{1}{\sqrt{\textbf{(x-1)(x-2)}}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{1}{\sqrt{ (x-1)(x-2)}}dx\\=\int\frac{1}{\sqrt{x^2-3x+2}}dx\\=\int\frac{1}{\sqrt{x^2-3x + \bigg(\frac{3}{2}\bigg)^2-\bigg(\frac{3}{2}\bigg)^2+2}}dx\\=\int\frac{1}{\sqrt{\bigg(x-\frac{3}{2}\bigg)^2 + \frac{(-9+8)}{4}}}$$
$$=\int\frac{1}{\sqrt{\bigg(x-\frac{3}{2}\bigg)^2-\bigg(\frac{1}{2}\bigg)^2}}\\\text{Let x}=\frac{3}{2}=t\\\Rarr\space dx=dt\\\therefore\space\text{I}=\int\frac{1}{\sqrt{t^2-\bigg(\frac{1}{2}\bigg)^2}}dt\\=\text{log}\begin{vmatrix} t +\sqrt{t^2-\frac{1}{2}}\end{vmatrix}+\text{C}\\\bigg[\because\space\int\frac{dx}{\sqrt{x^2-a^2}}=\text{log}|x + \sqrt{x^2-a^2}|\bigg]$$
$$=\space \text{log}\begin{vmatrix}x-\frac{3}{2} + \sqrt{\bigg(x-\frac{3}{2}\bigg)^2-\frac{1}{4}}\end{vmatrix}+\text{C}\\=\text{log}\begin{vmatrix}\bigg(x-\frac{3}{2}\bigg) + \sqrt{x^2-3x+2}\end{vmatrix}+\text{C}$$
$$\textbf{14.}\space\frac{\textbf{1}}{\sqrt{\textbf{8+3x-x}^\textbf{2}}}\\\textbf{Sol.}\space\text{Let}\space\qquad\text{I}=\int\frac{1}{\sqrt{8+3x-x^2}}dx\\=\int\frac{1}{\sqrt{8-\bigg[x^2-3x + \bigg(\frac{3}{2}\bigg)^2-\bigg(\frac{3}{2}\bigg)^2\bigg]}}dx\\=\int\space\frac{1}{\sqrt{8-\bigg[\bigg(x-\frac{3}{2}\bigg)^2-\frac{9}{4}\bigg]}}dx\\=\int\frac{1}{\sqrt{8+\frac{9}{4}-\bigg(x-\frac{3}{2}\bigg)^2}}dx$$
$$=\int\frac{1}{\sqrt{\bigg(\frac{\sqrt{41}}{2}\bigg)^2 -\bigg(x-\frac{3}{2}\bigg)^2}}dx\\\text{Let x−}\frac{3}{2}=t\\\Rarr\space dx=dt\\\therefore\space \text{I}=\int\frac{1}{\sqrt{\bigg(\frac{\sqrt{41}}{2}\bigg)^2-t^2}}dt\\=\text{sin}^{\normalsize-1}\bigg(\frac{t}{\frac{\sqrt{41}}{2}}\bigg)+\text{C}\\\bigg[\because\space\int\frac{dx}{\sqrt{a^2-x^2}}=\text{sin}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]$$
$$=\text{sin}^{\normalsize-1}\bigg(\frac{x-\frac{3}{2}}{\frac{\sqrt{41}}{2}}\bigg)+\text{C}\\=\text{sin}^{\normalsize-1}\bigg(\frac{2x-3}{\sqrt{41}}\bigg)+\text{C}\\\bigg(\because\space t=x-\frac{3}{2}\bigg)$$
$$\textbf{15.}\space\frac{\textbf{1}}{\sqrt{\textbf{(x-a)(x-b)}}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{1}{(x-a)(x-b)}dx\\=\int\frac{1}{\sqrt{x^2-(a+b)x+ab}}dx\\=\\\int\frac{1}{\sqrt{\bigg[x^2-(a+b)x+\bigg(\frac{a+b}{2}\bigg)^2-\bigg(\frac{a+b}{2}\bigg)^2+ ab\bigg]}}dx$$
$$=\int\frac{1}{\sqrt{\bigg[x-\bigg(\frac{a+b}{2}\bigg)\bigg]^2 +ab -\bigg(\frac{a+b}{2}\bigg)^2}}dx\\=\int\frac{1}{\sqrt{\bigg[x-\bigg(\frac{a+b}{2}\bigg)\bigg]^2+ab \space -\bigg(\frac{a^2+b^2+2ab}{4}\bigg)}}dx\\=\int\frac{1}{\sqrt{\bigg[x-\bigg(\frac{a+b}{2}\bigg)\bigg]^2 + \frac{4ab-a^2-b^2-2ab}{4}}}dx\\=\int\frac{1}{\sqrt{\bigg[x-\bigg(\frac{a+b}{2}\bigg)^2\bigg] + \frac{2ab -a^2-b^2}{4}}}dx$$
$$=\int\frac{1}{\sqrt{\bigg[x-\bigg(\frac{a+b}{2}\bigg)\bigg]^2-\bigg(\frac{a^2+b^2-2ab}{4}\bigg)}}dx\\=\int\frac{1}{\sqrt{\bigg(x-\frac{a+b}{2}\bigg)-\bigg(\frac{a-b}{2}\bigg)^2}}dx\\\text{Let}\space x-\frac{a+b}{2}=t\\\Rarr\space dx=dt\\\therefore\space \text{I}=\int\frac{1}{\sqrt{t^2-\bigg(\frac{a-b}{2}\bigg)^2}}dt$$
$$=\space\text{log}\begin{vmatrix}t+\sqrt{t^2 -\bigg(\frac{a-b}{2}\bigg)^2}\end{vmatrix}+\text{C}\\\bigg[\because\space\int\frac{dx}{\sqrt{x^2-a^2}}=\text{log}|x+\sqrt{x^2-a^2}|\bigg]$$
$$=\text{log}\begin{vmatrix}\because\space\int\frac{dx}{\sqrt{x^2-a^2}}=\text{log}|x + \sqrt{x^2-a^2}|\end{vmatrix}\\=\text{log}\space\begin{vmatrix}\bigg(x-\frac{a+b}{2}\bigg) + \sqrt{\bigg(x-\frac{a+b}{2}\bigg)^2-\bigg(\frac{a-b}{2}\bigg)^2}\end{vmatrix}\\+\text{C}\\\bigg(\because\space t=x-\frac{(a+b)}{2}\bigg)$$
$$=\\\space\text{log}\begin{vmatrix}\bigg(x-\frac{a+b}{2}\bigg) + \sqrt{x^2 + \frac{(a+b)^2}{4}-x(a+b)-\frac{(a-b)^2}{4}}\end{vmatrix}+\text{C}\\=\text{log}\begin{vmatrix}\bigg(x-\frac{a+b}{2}\bigg) + \sqrt{(x-a)(x-b)}\end{vmatrix}+\text{C}$$
$$\textbf{16.\space}\frac{\textbf{4x+1}}{\sqrt{\textbf{2x}^\textbf{2}\textbf{+x-3}}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{4x+1}{2x^2+x-3}dx\\\text{Let}\space 2x^2+x-3=t\\\Rarr 4x+1=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{4x+1}\\\therefore\space \text{I}=\int\frac{4x+1}{\sqrt{t}}×\frac{dt}{4x+1}\\=\int\frac{1}{\sqrt{t}}dt=2\sqrt{t}+\text{C}\\=2\sqrt{2x^2+x-3}+\text{C}\\(\because\space t= 2x^2+x-3)$$
$$\textbf{17.}\space \frac{\textbf{x+2}}{\sqrt{\textbf{x}^\textbf{2}\textbf{-1}}}\\\textbf{Sol.}\space \int\frac{\text{x+2}}{\sqrt{x^2-1}}dx\\=\int\frac{x}{\sqrt{x^2-1}}dx+\int\frac{2}{\sqrt{x^2-1}}dx\\=I_1+I_2\\\text{Now,}\space\text{I}_1=\int\frac{x}{\sqrt{x^2-1}}dx,$$
Let x2 – 1 = t
$$\Rarr\space 2x dx= dt\\\Rarr\space dx=\frac{dt}{2x}\\\therefore\space \text{I}_1=\int\frac{x}{\sqrt{t}}×\frac{dt}{2x}\\=\frac{1}{2}\int\frac{dt}{\sqrt{t}}\\=\frac{1}{2}\int t^{-1/2}dt\\=\frac{1}{2}[2 t^{1/2}]=\sqrt{t}=\sqrt{x^2-1}+\text{C}_1\\(\because\space t = x^2-1)\\\text{Now,}\space\text{I}_2=2\int\frac{1}{\sqrt{x^2-1}}dx\\ = 2 log x|x + \sqrt{x^2-1}|+\text{C}_2$$
$$\bigg[\because\space\int\frac{dx}{\sqrt{x^2-a^2}}=\text{log}|x + \sqrt{x^2-a^2}|\bigg]$$
On putting the values of I1 and I2 in Eq. (i), we get
$$\text{I}=\sqrt{x^2-1}+2\text{log}|x + \sqrt{x^2+1}|+\text{C}\\\text{where}\space\text{C}=\text{C}_1+\text{C}_2$$
$$\textbf{18.}\space\frac{\textbf{5x-2}}{\textbf{1+2x+3x}^2}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{5x-2}{1+2x+3x^2}dx\\\text{Let}\space 5x-2=\text{A}\frac{d}{dx}(1+2x+3x^2)+\text{B}$$
$$\Rarr\space\text{5x-2} = A(2 + 6x)+B\\\Rarr\space 5x-2=6Ax + (2A+B) $$
On equating the coefficient of x and constant on both sides, we get
5 = 6A
$$\Rarr\space A=\frac{5}{6}\space\text{and}\space 2A+B=-2\\\Rarr\space\text{B}=-\frac{11}{3}\\\therefore\space 5x-2=\frac{5}{6}(2+6x)+\bigg(-\frac{11}{3}\bigg)\\\therefore\space\text{I}=\int\frac{\frac{5}{6}(2+6x)-\frac{11}{3}}{1+2x+3x^2}dx\\=\frac{5}{6}\int\frac{2+6x}{1+2x+3x^2}dx\\-\frac{11}{3}\int\frac{1}{1+2x+3x^2}dx$$
$$\text{Let}\space \text{I}_1=\int\frac{2+6x}{1+2x+3x^2}dx\\\text{and}\space\text{I}_2=\int\frac{1}{1+2x+3x^2}dx\\\therefore\space \text{I}=\frac{5}{6}\text{I}_1-\frac{11}{3}\text{I}_2\space\text{...(i)}\\\text{Now,}\space\text{I}_1=\int\frac{2+6x}{1+2x+3x^2}dx$$
Let 1 + 2x + 3x2 = t
$$\Rarr\space (2+6x)dx=dt\\\therefore\space\text{I}_1=\int\frac{dt}{t}=\text{log}|t|+\text{C}_1\\\Rarr\space\text{I}_1=\text{log}|1+2x+3x^2|+\text{C}_1\space\text{...(ii)}\\\text{Also},\space\text{I}_2=\int\frac{1}{1+2x+3x^2}dx\\\text{1+2x+3x}^2\space\text{can be written as 1+3}\bigg(x^2+\frac{2}{3}x\bigg)\\\text{Therefore}\space 1+3\bigg(x^2+\frac{2}{3}x\bigg)\\=1+3\bigg(x^2+\frac{2}{3}x+\frac{1}{9}-\frac{1}{9}\bigg)\\=1+3\bigg(x+\frac{1}{3}\bigg)^2-\frac{1}{3}$$
$$=\frac{2}{3}+3\bigg(x+\frac{1}{3}\bigg)^2\\=3\bigg[\bigg(x+\frac{1}{3}\bigg)^2+\frac{2}{9}\bigg]\\=3\bigg[\bigg(x+\frac{1}{3}\bigg)^2+\bigg(\frac{\sqrt{2}}{3}\bigg)^2\bigg]\\\therefore\space\text{I}_2=\frac{1}{3}\int\frac{dx}{\bigg[\bigg(x+\frac{1}{3}\bigg)^2 + \bigg(\frac{\sqrt{2}}{3}\bigg)^2\bigg]}\\=\frac{1}{3}\begin{bmatrix}\frac{1}{\frac{\sqrt{2}}{3}}\text{tan}^{\normalsize-1}\bigg(\frac{x+\frac{1}{3}}{\frac{\sqrt{2}}{3}}\bigg)\end{bmatrix}+\text{C}_2\\\bigg[\because\space\int\frac{dx}{a^2+x^2}=\frac{1}{a}\text{tan}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]$$
$$=\frac{1}{3}\bigg[\frac{3}{\sqrt{2}}\text{tan}^{\normalsize-1}\bigg(\frac{3x+1}{\sqrt{2}}\bigg)\bigg]+\text{C}_2\\=\frac{1}{\sqrt{2}}\text{tan}^{\normalsize-1}\bigg(\frac{3x+1}{\sqrt{2}}\bigg)+\text{C}_2\space\text{...(iii)}$$
On substituting the values of I1 and I2 from equations (ii) and (iii) in Eq. (i), we get
$$\text{I}=\frac{5}{6}[\text{log}|1+2x++3x^2|]-\\\frac{11}{3}\bigg[\frac{1}{\sqrt{2}}\text{tan}^{\normalsize-1}\bigg(\frac{3x+1}{\sqrt{2}}\bigg)\bigg]+\text{C}\\\bigg(\because\space \frac{5}{6}\text{C}_1-\frac{11}{3}\text{C}_2=\text{C}\bigg)\\=\frac{5}{6}\text{log}|1+2x+3x^2|-\\\frac{11}{3\sqrt{2}}\text{tan}^{\normalsize-1}\bigg(\frac{3x+1}{\sqrt{2}}\bigg)+\text{C}$$
$$\textbf{19.}\space\frac{\textbf{6x+7}}{\sqrt{\textbf{(x-5)(x-4)}}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int\frac{6x+7}{\sqrt{(x-5)(x-4)}}dx\\=\int\frac{6x+7}{\sqrt{x^2-9x+20}}dx\\\text{Let}\space 6x+7=A\frac{d}{dx}(x^2-9x+20)+\text{B}$$
$$\Rarr\space 6x+7=A(2x-9)+\text{B}\\\Rarr\space 6x+7=2Ax + (-9A+B)$$
On equating the coefficients of x and constant term on both sides, we get
$$\text{2A = 6}\\\Rarr\space A=3\space\text{and}-9A+B=7\\\Rarr\space B=34\\\Rarr\space 6x+7=3(2x-9)+34\\\therefore\space \text{I}=\int\frac{3(2x-9)+34}{\sqrt{x^2-9x+20}}dx\\=3\int\frac{2x-9}{\sqrt{x^2-9x+20}}dx+\\34\int\frac{1}{\sqrt{x^2-9x+20}}dx\\\text{Let}\space\text{I}_1=\int\frac{2x-9}{\sqrt{x^2-9x+20}}dx\\\text{and}\space \text{I}_2=\int\frac{1}{\sqrt{x^2-9x+20}}dx$$
$$x^2-9x+20\space\text{can be written as}\\\space x^2-9x+20+\frac{81}{4}-\frac{81}{4}\\\text{Therefore\space,}x^2-9x+20+\frac{81}{4}-\frac{81}{4}\\=\bigg(x-\frac{9}{2}\bigg)^2-\frac{1}{4}\\=\bigg(x-\frac{9}{2}\bigg)^2-\bigg(\frac{1}{2}\bigg)^2\\\therefore\space\text{I}_2=\int\frac{1}{\bigg(x-\frac{9}{2}\bigg)^2-\bigg(\frac{1}{2}\bigg)^2}dx$$
$$=\text{log}\begin{vmatrix}\bigg(x-\frac{9}{2}\bigg) + \sqrt{\bigg( x-\frac{9}{2}\bigg)^2-\frac{1}{4}}\end{vmatrix}\\+\text{C}_2\\\bigg[\because\space\int\frac{dx}{\sqrt{x^2-a^2}}=\text{log}|x+\sqrt{x^2-a^2}|\bigg]\\=\text{log}\begin{vmatrix}\bigg(x-\frac{9}{2}\bigg) + \sqrt{x^2-9x+20}\end{vmatrix}\\+\text{C}_2\text{...(iii)}$$
On substituting the values of I1 and I2 from equations (ii) and (iii) in equation (i), we get
$$\text{I}=3[2\sqrt{x^2-9x+20}]\\+34\space\text{log}\begin{vmatrix}\bigg(x-\frac{9}{2}\bigg) + \sqrt{x^2-9x+20}\end{vmatrix}+\text{C}\\\lbrack\because\space 3 C_1+34C_2=C\rbrack\\=6\sqrt{x^2-9x+20}+\\34\text{log}\begin{vmatrix}\bigg(x-\frac{9}{2}\bigg)+\\\sqrt{x^2-9x+20}\end{vmatrix}+\text{C}$$
$$\textbf{20}\space\frac{\textbf{x+2}}{\sqrt{\textbf{4x-x}^\textbf{2}}}\\\textbf{Sol.}\space \text{Let}\space x+2=A\frac{d}{dx}(4x-x^2)+B$$
$$\Rarr\space x+2=A(4-2x)+B\\\Rarr\space x+2=-2Ax+4A+B$$
On equating the coefficients of x and constant term on both sides, we get
$$-2A=1\Rarr\space\text{A}=-\frac{1}{2}\space\text{and}\space 4A + B =2\\\Rarr\space B=4\\\Rarr\space (x+2)=-\frac{1}{2}(4-2x)+4\\\therefore\space\int\frac{x+2}{\sqrt{4x-x^2}}dx=\\\int\frac{-\frac{1}{2}(4-2x)+4}{\sqrt{4x-x^2}}dx\\=-\frac{1}{2}\int\frac{4-2x}{\sqrt{4x-x^2}}dx+4\int\frac{dx}{\sqrt{4x-x^2}}$$
$$\text{Let}\space\text{I}_1=\int\frac{4-2x}{\sqrt{4x-x^2}}dx\\\text{and}\space\text{I}_2=\int\frac{dx}{\sqrt{4x-x^2}}\\\text{Then}\space\int\frac{x+2}{\sqrt{4x-x^2}}dx=-\frac{1}{2}\text{I}_1 + 4\text{I}_2\space\text{...(i)}\\\text{Now,}\space \text{I}_1=\int\frac{4-2x}{\sqrt{4x-x^2}}dx$$
Let 4x – x2 = t
$$\Rarr\space (4-2x)dx=dt\\\Rarr\space \text{I}_1=\int\frac{dt}{\sqrt{t}}=2\sqrt{t}+\text{C}_1\\=2\sqrt{4x-x^2}+\text{C}_1\space\text{...(ii)}\\\text{and}\space\text{I}_2=\int\frac{dx}{\sqrt{4x-x^2}}$$
[∵ 4x – x2 = – (x2 – 4x) = – [(x – 2)2 – 4]
= [(2)2 – (x – 2)2]
$$\therefore\space\text{I}_2=\int\frac{1}{\sqrt{(2)^2-(x-2)^2}}dx\\=\text{sin}^{\normalsize-1}\bigg(\frac{x-2}{2}\bigg)+\text{C}_2\space\text{...(iii)}\\\bigg[\because\space\int\frac{dx}{\sqrt{a^2-x^2}}=\text{sin}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]$$
On substituting the values of I1 and I2 from Eqs. (ii) and (iii) in Eq. (i), we get
$$\int\frac{x+2}{\sqrt{4x-x^2}}dx\\=-\frac{1}{2}[2\sqrt{4x-x^2}]+4\text{sin}^{\normalsize-1}\bigg(\frac{x-2}{2}\bigg)+\text{C}\\\bigg(\because\space -\frac{1}{2}\text{C}_1+4\text{C}_2=\text{C}\bigg)\\=\sqrt{4x-x^2}+4\space\text{sin}^{\normalsize-1}\bigg(\frac{x-2}{2}\bigg)+\text{C}$$
$$\textbf{21.}\space\frac{\textbf{x+2}}{\sqrt{\textbf{x}^\textbf{2}\textbf{+2x+3}}}\\\textbf{Sol.}\space\text{Let x+2}=A\frac{d}{dx}(x^2+2x+3)+B$$
$$\Rarr\space x+2=A(2x+2)+B\\\Rarr\space x+2=2Ax+(2A+B)$$
On equating the coefficient of x and constant term on both sides, we get
$$2A=1\\\Rarr\space A=\frac{1}{2}\space\text{and}\space 2A+B=2\\\Rarr\space 2×\frac{1}{2}+B=2\\\Rarr\space B=2-1=1\\\Rarr\space x+2=\frac{1}{2}(2x+2)+1\\\therefore\space\int\frac{x+2}{\sqrt{x^2+2x+3}}dx\\=\int\frac{\frac{1}{2}(2x+2)+1}{\sqrt{x^2+2x+3}}dx\\=\frac{1}{2}\int\frac{2x+2}{\sqrt{x^2+2x+3}}dx+\\\int\frac{dx}{\sqrt{x^2+2x+3}}$$
$$\text{Let\space}I_1=\int\frac{2x+2}{\sqrt{x^2+2x+3}}dx\\\text{and}\space\text{I}_2=\int\frac{dx}{\sqrt{x^2+2x+3}}\\\text{Then}\space\int\frac{x+2}{\sqrt{x^2+2x+3}}dx\\=\frac{1}{2}\text{I}_1+\text{I}_2\space\text{...(i)}\\\text{Now,}\space\text{I}_1=\int\frac{2x+2}{\sqrt{x^2+2x+3}}dx$$
Let x2 + 2x + 3 = t
$$\Rarr\space(2x+2)dx=dt$$
$$\therefore\space \text{I}_1=\int\frac{dt}{\sqrt{t}}=\int t^{-1/2}dt\\=\frac{t^{(-1/2)+1}}{-\frac{1}{2}+1}+\text{C}_1\\=2\sqrt{t}+\text{C}_1\\=2\sqrt{x^2+2x+3}+\text{C}_1$$
$$\text{and}\space\text{I}_2=\int\frac{dx}{\sqrt{x^2+2x+3}}\\=\int\frac{dx}{\sqrt{x^2+2x+(1)^2+3-(1)^2}}\\=\int\frac{dx}{\sqrt{(x+1)^2+(\sqrt{2})^2}}$$
Let x + 1 = t
$$\Rarr\space dx=dt\\\text{I}_2=\int\frac{dt}{\sqrt{t^2 + (\sqrt{2})^2}}\\=\text{log}|t+\sqrt{t^2+2}|+\text{C}_2\\\bigg[\because\space\int\frac{dx}{\sqrt{x^2+a^2}}=\text{log}|x+\sqrt{x^2+a^2}|\bigg]$$
$$=\text{log}|x + 1 + \sqrt{(x+1)^2+2}|+\text{C}_2\\=\text{log}|x+1+\sqrt{x^2+2x+3}|+\text{C}_2$$
On putting the values of I1 and I2 eq. (i), we get
$$\int\frac{x+2}{\sqrt{x^2+2x+3}}dx\\=\frac{1}{2}[2\sqrt{x^2+2x+3}]+\text{log}|x+1 +\\\sqrt{x^2+2x+3}|+\text{C}\\\bigg[\because\frac{1}{2}\text{C}_1+4\text{C}_2=\text{C}\bigg]\\=\sqrt{x^2+2x+3}+\\\text{log}|x+1+\sqrt{x^2+2x+3}|+\text{C}$$
$$\textbf{22.}\space\frac{\textbf{x+3}}{\textbf{x}^\textbf{2}\textbf{-2x-5}}\\\textbf{Sol.}\space\text{Let}(x+3)\\=A\frac{d}{dx}(x^2-2x-5)+\text{B}$$
$$\Rarr\space(x+3)=A(2x-2)+B\\\Rarr\space x+3=2Ax-2A+B$$
On equating the coefficients of x and constant term on both sides, we get
2A = 1
$$\Rarr\space\text{A}=\frac{1}{2}\space\text{and}-2A+B=3\\\Rarr\space B=4\\\Rarr\space (x+3)=\frac{1}{2}(2x-2)+4\\\therefore\space\int\frac{x+3}{x^2+2x-5}dx\\=\int\frac{\frac{1}{2}(2x-2)+4}{x^2-2x-5}dx\\=\frac{1}{2}\int\frac{(2x-2)}{x^2-2x-5}dx+\\4\int\frac{1}{x^2-2x-5}dx\\\text{Let}\space\text{I}_1=\int\frac{2x-2}{x^2-2x-5}dx$$
$$\text{and}\space\text{I}_2=\int\frac{1}{x^2-2x-5}dx\\\therefore\space\int\frac{x+3}{x^2+2x+5}dx\\=\frac{1}{2}\text{I}_1+4\text{I}_2\\\text{Now,}\space\text{I}_1=\int\frac{2x-2}{x^2-2x-5}dx$$
Let x2 – 2x – 5 = t
$$\Rarr\space (2x-2)dx=dt\\\therefore\space\text{I}_1=\int\frac{dt}{t}=\text{log}|t|+\text{C}_1\\=\text{log}|x^2-2x-5|+\text{C}_1\space\text{...(ii)}\\\text{and}\space\text{I}_2=\int\frac{1}{x^2-2x-5}dx\\=\int\frac{1}{(x^2-2x+1)-6}dx\\=\int\frac{1}{(x-1)^2-(\sqrt{6})^2}dx\\=\frac{1}{2\sqrt{6}}\text{log}\begin{vmatrix}\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\end{vmatrix}\space\text{...(iii)}\\\bigg[\because\space\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\text{log}\begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}\bigg]$$
On substituting the values I1 and I2 from Eqs. (ii) and (iii) in Eq. (i), we get
$$\int\frac{x+3}{x^2-2x-5}dx\\=\frac{1}{2}\text{log}|x^2-2x-5|+\\4\bigg[\frac{1}{2\sqrt{6}}\text{log}\begin{vmatrix}\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\end{vmatrix}\bigg]+\text{C}\\\bigg[\because\frac{1}{2}\text{C}_1+4\text{C}_2=\text{C}\bigg]\\=\frac{1}{2}\text{log}|x^2-2x-5|+\\\frac{2}{\sqrt{6}}\text{log}\begin{vmatrix}\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\end{vmatrix}+\text{C}$$
$$\textbf{23.}\space\frac{\textbf{5x+3}}{\sqrt{\textbf{x}^\textbf{2}\textbf{+4x+10}}}\\\textbf{Sol.}\space\text{Let 5x+3}\\=A\frac{d}{dx}(x^2+4x+10)+B\\\Rarr\space 5x+3=A(2x+4)+B\\\Rarr\space 5x+3=2Ax+4A+B$$
On equating the coefficients of x and constant term on both sides, we get
$$2A=5\Rarr\space A=\frac{5}{2}\\\text{and}\space 4A+B=3\\\Rarr\space B=-7\\\Rarr\space 5x+3=\frac{5}{2}(2x+4)-7$$
$$\therefore\space \int\frac{5x+3}{\sqrt{x^2+4x+10}}dx\\=\int\frac{\frac{5}{2}(2x+4)-7}{\sqrt{x^2+4x+10}}dx\\=\frac{5}{2}\int\frac{2x+4}{\sqrt{x^2+4x+10}}dx\\-7\int\frac{1}{x^2+4x+10}dx\\\text{Let}\space\text{I}_1=\int\frac{2x+4}{\sqrt{x^2+4x+10}}dx\\\text{and}\space\text{I}_2=\int\frac{1}{\sqrt{x^2+4x+10}}dx\\\therefore\space\int\frac{5x+3}{\sqrt{x^2+4x+10}}dx$$
$$=\frac{5}{2}\text{I}_1-7\text{I}_2\space\text{...(i)}\\\text{Now,}\\\space\text{I}_1=\int\frac{2x+4}{\sqrt{x^2+4x+10}}dx\\\text{Let x}^2+4x+10=t\\\Rarr\space (2x+4)dx=dt\\\Rarr\space dx=\frac{dt}{2x+4}\\\therefore\space\text{I}_1=\int\frac{2x+4}{\sqrt{t}}×\frac{dt}{2x+4}\\=\int\frac{dt}{\sqrt{t}}=2\sqrt{t}+\text{C}_1\\=2\sqrt{x^2+4x+10}+\text{C}_1\space\text{...(ii)}$$
$$\text{and}\space\text{I}_2=\int\frac{1}{\sqrt{x^2+4x+10}}dx\\=\int\frac{1}{\sqrt{(x^2+4x+4)+6}}dx\\=\int\frac{1}{\sqrt{(x+2)^2+(\sqrt{6})^2}}\\=\text{log}|(x+2)+\sqrt{(x+2)^2+6}|+\text{C}_2\\\text{...(iii)}\\\bigg[\because\space\int\frac{dx}{\sqrt{x^2+a^2}}=\text{log}|x+\sqrt{x^2+a^2}|\bigg]\\=\text{log|x+2+}\sqrt{x^2+4x+10}|+\text{C}_2$$
On substituting the values of I1 and I2 from equations (ii) and (iii) in equation (i), we get
$$\int\frac{5x+3}{\sqrt{x^2+4x+10}}dx\\=\frac{5}{2}[2\sqrt{x^2+4x+10}]-7\space\text{log}\\|x+2+2\sqrt{x^2+4x+10}|+\text{C}\\\bigg[\because\space\frac{5}{2}\text{C}_1-7\text{C}_2=\text{C}\bigg]\\=5\sqrt{x^2+4x+10}\text{log}\\|x+2+\sqrt{x^2+4x+10}|+\text{C}$$
Direction (For Q. 24 and 25) : Choose the correct answer.
$$\textbf{24.}\space\int\frac{\textbf{1}}{\textbf{x}^\textbf{2}\textbf{+2x+2}}\textbf{dx}\space\textbf{equals}$$
(a) x tan–1 (x + 1) + C
(b) tan–1 (x + 1) + C
(c) (x + 1) tan–1 x + C
(d) tan–1 x + C
Sol. (b) tan–1 (x + 1) + C
$$\text{Let}\space\text{I}=\int\frac{1}{x^2+2x+2}dx\\=\int\frac{1}{(x+1)^2+1^2}dx\\\text{Let}\space x+1=t\\\Rarr\space dx=dt\\\therefore\space\text{I}=\int\frac{1}{t^2+1^2}dt\\=\frac{1}{1}\text{tan}^{\normalsize-1}\bigg(\frac{t}{1}\bigg)+\text{C}\\\bigg[\because\int\frac{dx}{a^2+x^2}=\frac{1}{a}\text{tan}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]\\=\text{tan}^{\normalsize-1}\bigg(\frac{x+1}{1}\bigg)+\text{C}$$
= tan–1 (x + 1) + C
$$\textbf{25.}\space\int\frac{\textbf{1}}{\sqrt{\textbf{9x-4x}^\textbf{2}}}\textbf{dx is equal}\\\textbf{(a)\space}\frac{\textbf{1}}{\textbf{9}}\textbf{sin}^{\normalsize-1}\bigg(\frac{\textbf{9x-8}}{\textbf{8}}\bigg)+\textbf{C}\\\textbf{(b)}\space\frac{\textbf{1}}{\textbf{2}}\textbf{sin}^{\normalsize-1}\bigg(\frac{\textbf{8x-9}}{\textbf{9}}\bigg)+\textbf{C}\\\textbf{(c)}\space\frac{\textbf{1}}{\textbf{3}}\textbf{sin}^{\normalsize-1}\bigg(\frac{\textbf{9x-8}}{\textbf{8}}\bigg)+\textbf{C}\\\textbf{(d)}\space\frac{\textbf{1}}{\textbf{2}}\space\textbf{sin}^{\normalsize-1}\bigg(\frac{\textbf{9x-8}}{\textbf{9}}\bigg)+\textbf{C}\\\textbf{Sol.}\space\text{(b)}\frac{1}{2}\text{sin}\bigg(\frac{8x-9}{a}\bigg)+\text{C}\\\int\frac{1}{\sqrt{9x-4x^2}}dx$$
$$\frac{\text{1}}{\sqrt{\text{4}}}\int\frac{1}{\sqrt{\frac{9}{4}x-x^2}}dx\\=\frac{1}{2}\int\frac{1}{\sqrt{-\bigg[x^2-\frac{9}{4}x+\bigg(\frac{9}{8}\bigg)^2\bigg]}+\bigg(\frac{9}{8}\bigg)^2}dx\\=\frac{1}{2}\int\frac{1}{\sqrt{\bigg(\frac{9}{8}\bigg)^2-\bigg(x-\frac{9}{8}\bigg)^2}}dx\\=\frac{1}{2}\text{sin}^{\normalsize-1}\bigg(\frac{x-\frac{9}{8}}{\frac{9}{8}}\bigg)+\text{C}\\\bigg[\because\space\int\frac{dx}{\sqrt{a^2-x^2}}=\text{sin}^{\normalsize-1}\bigg(\frac{x}{a}\bigg)\bigg]$$
$$=\frac{1}{2}\text{sin}^{\normalsize-1}\bigg(\frac{8x-9}{9}\bigg)+\text{C}$$
Share page on
NCERT Solutions Class 12 Mathematics
- Chapter 1 Relations and Functions
- Chapter 2 Inverse Trigonometric Functions
- Chapter 3 Matrices
- Chapter 4 Determinants
- Chapter 5 Continuity and Differentiability
- Chapter 6 Application of Derivatives
- Chapter 7 Integrals
- Chapter 8 Applications of the Integrals
- Chapter 9 Differential Equations
- Chapter 10 Vectors
- Chapter 11 Three-Dimensional Geometry
- Chapter 12 Linear Programming
- Chapter 13 Probability
CBSE CLASS 12 NCERT SOLUTIONS
- NCERT Solutions Class 12 English Core
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Business Studies
- NCERT Solutions Class 12 Mathematics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Geography
- NCERT Solutions Class 12 History
- NCERT Solutions Class 12 Political Science
CBSE CLASS 12 SYLLABUS
- CBSE Class 12 English core Syllabus
- CBSE Class 12 Mathematics Syllabus
- CBSE Class 12 Physics Syllabus
- CBSE Class 12 Chemistry Syllabus
- CBSE Class 12 Biology Syllabus
- CBSE Class 12 Accountancy Syllabus
- CBSE Class 12 Business Studies Syllabus
- CBSE Class 12 Economics Syllabus
- CBSE Class 12 History Syllabus
- CBSE Class 12 Geography Syllabus
- CBSE Class 12 Political science Syllabus
- CBSE Class 12 Sociology Syllabus
- CBSE Class 12 Psychology Syllabus
- CBSE Class 12 Physical education Syllabus
- CBSE Class 12 Applied mathematics Syllabus
- CBSE Class 12 History of Indian Arts Syllabus
CBSE CLASS 12 Notes
- CBSE Class 12 Physics Notes
- CBSE Class 12 Chemistry Notes
- CBSE Class 12 Biology Notes
- CBSE Class 12 Maths Notes
- CBSE Class 12 Accountancy Notes
- CBSE Class 12 Business Studies Notes
- CBSE Class 12 Economics Notes
- CBSE Class 12 History Notes
- CBSE Class 12 Geography Notes
- CBSE Class 12 Political Science Notes