NCERT Solutions for Class 12 Maths Chapter 7 - Integrals - Exercise 7.9
Exercise 7.1 Solutions 22 Questions
Exercise 7.2 Solutions 39 Questions
Exercise 7.3 Solutions 24 Questions
Exercise 7.4 Solutions 25 Questions
Exercise 7.5 Solutions 23 Questions
Exercise 7.6 Solutions 24 Questions
Exercise 7.7 Solutions 11 Questions
Exercise 7.8 Solutions 6 Questions
Exercise 7.9 Solutions 22 Questions
Exercise 7.10 Solutions 10 Questions
Exercise 7.11 Solutions 21 Questions
Miscellaneous Exercise on Chapter 7 Solutions 44 Questions
Exercise 7.9
Evaluate the definite integrals.
$$\textbf{1.\space}\int^{\textbf{1}}_{\textbf{-1}}\textbf{(x+1)dx.}\\\textbf{Sol.}\space\text{Let I}=\int^{1}_{\normalsize-1}(x+1)dx\\=\bigg[\frac{x^2}{2}+x\bigg]^{1}_{\normalsize-1}\\=\bigg[\frac{1^2}{2}+1\bigg]-\bigg[\frac{(\normalsize-1)^2}{2}-1\bigg]\\\text{I}=\frac{3}{2}+\frac{1}{2}=\frac{4}{2}=2$$
$$\textbf{2.}\space\int^{\textbf{3}}_{\textbf{2}}\frac{\textbf{1}}{\textbf{x}}\textbf{dx}\\\textbf{Sol.\space}\text{Let I}=\int^{3}_{2}\frac{1}{x}dx=[log x]^{3}_{2}\\=\text{log 3- log 2}=\frac{3}{2}$$
$$\textbf{3.\space}\int^{\textbf{2}}_{\textbf{1}}\textbf{(4x}^\textbf{3}\textbf{-5x}^\textbf{2}\textbf{+6x+9)}\textbf{dx.}\\\textbf{Sol.}\space\text{Let \space I}=\int^{2}_{1}(4x^3-5x^2+6x+9)dx\\=\bigg[\frac{4x^4}{4}-\frac{5x^3}{3}+\frac{6x^2}{2}+9x\bigg]^{2}_{1}\\=\bigg[x^4-\frac{5x^3}{3}+3x^2+9x\bigg]^{2}_{1}\\=\bigg[(2)^4-\frac{5(2)^3}{3}+3(2)^2+9(2)\bigg]-\\\bigg[(1)^4-\frac{5(1)^3}{3}+3(1)^2+9(1)\bigg]$$
$$=\bigg[16-\frac{40}{3}+12+18\bigg]-\\\bigg[1-\frac{5}{3}+3+9\bigg]\\=\bigg[46-\frac{40}{3}\bigg]-\bigg[13-\frac{5}{3}\bigg]\\=\bigg[\frac{138-40}{3}\bigg]-\bigg[\frac{39-5}{3}\bigg]\\=\frac{98}{3}-\frac{34}{3}=\frac{64}{3}$$
$$\textbf{4.\space}\int^{\frac{\pi}{\textbf{4}}}_{\textbf{0}}\space\textbf{sin 2x dx.}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int^{\frac{\pi}{4}}_{0}\space\text{sin2xdx}\\=\int^{\pi/4}_{0}\text{2 sin x cosx dx}\\\lbrack\because\space\text{sin 2x = 2 sinx cosx}\rbrack\\\text{Put sin x = t}\\\Rarr\space\text{cos x}=\frac{dt}{dx}\Rarr\space dx=\frac{dt}{\text{cos x}}\\\text{Upper limit, at x=}\frac{\pi}{4}\\\Rarr\space t=\text{sin}\frac{\pi}{4}=\frac{1}{\sqrt{2}}$$
Lower limit, at x = 0
$$\Rarr\space t=\text{sin 0 = 0}\\\therefore\space\text{I}=2\int^{\frac{1}{\sqrt{2}}}_{0}\space\text{t cos x}\frac{dt}{cos x}\\=2\int^{\frac{1}{\sqrt{2}}}_{0}\space\text{t dt}\\= 2\bigg[\frac{t^2}{2}\bigg]^{\frac{1}{\sqrt{2}}}_{0}\\=\bigg(\frac{1}{\sqrt{2}}\bigg)^2=\frac{1}{2}$$
Note : If we change the integral function by considerable another variable, then remember to change the limit or after integration change into the given variable and then apply the limit.
$$\textbf{5.\space}\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\space\textbf{cos 2x\space dx}\\\textbf{Sol.}\space\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\space\text{cos 2x dx}=\bigg[\frac{sin 2x}{2}\bigg]^{\frac{\pi}{2}}_{0}\\\bigg(\because\space\int\text{cos ax dx}=\frac{sin\space ax}{a}\bigg)\\=\frac{1}{2}[\text{sin}\space 2x]^{\frac{\pi}{2}}_{0}=\frac{1}{2}\bigg[\bigg(\text{sin 2}×\frac{\pi}{2}\bigg)-\text{sin}(0)\bigg]\\=\frac{1}{2}[0-0]=0$$
$$\textbf{6.\space}\int^{\textbf{5}}_{\textbf{4}}\space \textbf{e}^\textbf{x}\space \textbf{dx}\\\textbf{Sol.}\space\int^{5}_{4} e^xdx=[e^x]^{5}_{4}\\=[e^5-e^4]=e^4[e-1]$$
$$\textbf{7.}\space\int^{\frac{\pi}{\textbf{4}}}_{\textbf{0}}\space\textbf{tan x dx}\\\textbf{Sol.\space}\int^{\frac{\pi}{4}}_{0}\space\text{tan x dx}=\bigg[\text{-log|cos x|}\bigg]^{\frac{\pi}{4}}_{0}\\=-\text{log}\begin{vmatrix}\text{cos}\frac{\pi}{4}\end{vmatrix}-(-log\space|\text{cos 0}|)\\=-\space log\bigg(\frac{1}{\sqrt{2}}\bigg)+\text{log 1}= - \text{log}\space 2^{-1/2}+0\\\lbrack\because\space \text{log 1 = 0 and log}\space m^n= nlog m\rbrack\\=\frac{1}{2}\text{log 2}$$
$$\textbf{8.}\space\int^{\frac{\pi}{\textbf{4}}}_{\frac{\pi}{\textbf{6}}}\space\textbf{cosec x}\space \textbf{dx.}\\\textbf{Sol.\space}\text{I}=\int^{\frac{\pi}{4}}_{\frac{\pi}{6}}\space\text{cosec x dx}=\\\bigg[\text{log}|\text{cosec x -cot x}|\bigg]^{\frac{\pi}{4}}_{\frac{\pi}{6}}\\=\text{log}\begin{vmatrix}\text{cosec}\frac{\pi}{4}-\text{cot}\frac{\pi}{4}\end{vmatrix}-\\\text{log}\begin{vmatrix}\text{cosec}\frac{\pi}{6}-\text{cot}\frac{\pi}{6}\end{vmatrix}\\=\text{log}|\sqrt{2}-1- \log|2-\sqrt{3}||\\=\text{log}\begin{vmatrix}\frac{\sqrt{2}-1}{2-\sqrt{3}}\end{vmatrix}\\\bigg(\because\text{log a - log b}= log\frac{a}{b}\bigg)$$
$$\textbf{9.}\space\int^{\textbf{1}}_{\textbf{0}}\space\frac{\textbf{1}}{\sqrt{\textbf{1-x}^\textbf{2}}}\textbf{dx}\\\textbf{Sol.}\space\int^{1}_{0}\space\frac{1}{\sqrt{1-x^2}}dx\\=[\text{sin}^{\normalsize-1}x]^{1}_{0}\\\bigg(\because\space\int\frac{dx}{\sqrt{1-x^2}}=\text{sin}^{\normalsize-1}x\bigg)\\=\text{sin}^{\normalsize-1}-\text{sin}^{\normalsize-1}0=\frac{\pi}{2}-0\\=\frac{\pi}{2}$$
$$\textbf{10.\space}\int^{\textbf{1}}_{\textbf{0}}\frac{\textbf{1}}{\textbf{1+x}^\textbf{2}}\textbf{dx}\\\textbf{Sol.}\space\int^{1}_{0}\frac{1}{1+x^2}dx\\=[\text{tan}^{\normalsize-1}x]^{1}_{0}\\\bigg(\because\space\int\frac{dx}{1+x^2}=\text{tan}^{\normalsize-1}x\bigg)\\=\text{tan}^{\normalsize-1}1-\text{tan}^{\normalsize-1}0=\frac{\pi}{4}$$
$$\textbf{11.}\space\int^{\textbf{3}}_{\textbf{2}}\space\frac{\textbf{1}}{\textbf{x}^\textbf{2}\textbf{-1}}\space\textbf{dx}\\\textbf{Sol.}\space\int^{3}_{2}\frac{1}{x^2-1}dx=\bigg[\frac{1}{2}\text{log} \begin{vmatrix}\frac{x-1}{x+1}\end{vmatrix}\bigg]^{3}_{2}\\\bigg[\because\space\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\text{log}\begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}\bigg]\\=\frac{1}{2}\text{log} \begin{vmatrix}\frac{3-1}{3+1}\end{vmatrix}-\frac{1}{2}\text{log}\begin{vmatrix}\frac{2-1}{2+1}\end{vmatrix}\\=\frac{1}{2}\text{log}\begin{vmatrix}\frac{2}{4}\end{vmatrix}-\frac{1}{2}\text{log}\begin{vmatrix}\frac{1}{3}\end{vmatrix}\\=\frac{1}{2}\bigg[\text{log}\begin{vmatrix}\frac{1}{2}\end{vmatrix}-\text{log}\begin{vmatrix}\frac{1}{3}\end{vmatrix}\bigg]\\\frac{1}{2}[\text{log}(1)-\text{log}(2)-\text{log}(1)+\text{log}(3)]$$
$$\bigg[\because\space\text{log}\bigg(\frac{a}{b}\bigg)=\text{log a - log b}\bigg]\\=\frac{1}{2}\text{log}\bigg(\frac{3}{2}\bigg)$$
$$\textbf{12.}\space\int^{\frac{\pi}{\textbf{2}}}_{\textbf{0}}\space\textbf{cos}^\textbf{2}\textbf{x dx.}\\\textbf{Sol.}\space\int^{\frac{\pi}{\text{2}}}_{0}\space\text{cos}^2 xdx=\int^{\frac{\pi}{2}}_{0}\bigg(\frac{\text{cos 2x+1}}{2}\bigg)dx\\(\because\space \text{cos 2x = 2 cos}^2 x-1)\\=\frac{1}{2}\int^{\frac{\pi}{2}}_{0}\space\text{cos 2x dx}+\frac{1}{2}\int^{\frac{\pi}{2}}_{0}\space 1 dx\\=\frac{1}{2}\bigg[\frac{\text{sin 2x}}{2}\bigg]^{\frac{\pi}{2}}_{0}+\frac{1}{2}[x]^{\frac{\pi}{2}}_{0}\\=\frac{1}{2}\bigg[\bigg(\frac{\text{sin}\space \pi}{2}-\frac{\text{sin 0}}{2}\bigg)+\bigg(\frac{\pi}{2}-0\bigg)\bigg]\\=\frac{\pi}{4}+0-0=\frac{\pi}{4}.$$
$$\textbf{13.}\space\int^{\textbf{3}}_{\textbf{2}}\space\frac{\textbf{x}}{\textbf{x}^\textbf{2}\textbf{+1}}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int^{3}_{2}\frac{x}{x^2+1}dx\\\text{Put\space}x^2+1=t\\\Rarr\space 2x=\frac{dt}{dx}\Rarr\space dx=\frac{dt}{2x}\\\therefore\space\text{I}=\int^{3}_{2}\frac{x}{t}\frac{dt}{2x}=\frac{1}{2}\int^{3}_{2}\frac{1}{t}dt\\=\frac{1}{2}[\text{log}|t|]^{3}_{2}=\frac{1}{2}[\text{log}|x^2+1|]^{3}_{2}$$
(∵ t = x2 + 1)
$$=\frac{1}{2}\bigg[\text{log}|3^2+1|-\text{log}|2^2+1|\bigg]\\=\frac{1}{2}[\text{log}|10|-\text{log}|5|]\\=\frac{1}{2}\text{log}\begin{vmatrix}\frac{10}{5}\end{vmatrix}=\frac{1}{2}\text{log 2}\\\bigg(\because\space \text{log a- log b = log}\frac{a}{b}\bigg)$$
$$\textbf{14.}\space\int^{\textbf{1}}_{\textbf{0}}\space\frac{\textbf{2x+3}}{\textbf{(}\textbf{5x}^\textbf{2}\textbf{+1}\textbf{)}}\textbf{dx}\\\textbf{Sol.\space}\text{Let}\space\text{I}=\int^{1}_{0}\frac{2x+3}{(5x^2+1)}dx\\=\int^{1}_{0}\frac{2x}{(5x^2+1)}dx+3\int^{1}_{0}\frac{1}{(5x^2+1)}dx\\\text{Put 5x}^2+1=t\Rarr 10x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{10x}$$
When x = 0, t = 0, When x = 1, t = 6
$$\therefore\space\text{I}=\int^{6}_{0}\frac{2x}{t}\frac{dt}{10 x}+\frac{3}{5}\int^{1}_{0}\frac{1}{x^2+\bigg(\frac{1}{\sqrt{5}}\bigg)^2}dx\\=\frac{1}{5}\int^{6}_{0}\frac{1}{t}dt+\frac{3}{5}\int^{1}_{0}\frac{1}{x^2+\bigg(\frac{1}{\sqrt{5}}\bigg)^2}dx\\=\frac{1}{5}[\text{log}]^{6}_{0}+\frac{3}{5}×\frac{1}{\frac{1}{\sqrt{5}}}\bigg[\text{tan}^{\normalsize-1}\frac{x}{\frac{1}{\sqrt{5}}}\bigg]^{1}_{0}\\\bigg(\because\space\int\frac{dx}{a^2+x^2}=\frac{1}{a}\text{tan}{\normalsize-1}\frac{x}{a}\bigg)\\=\frac{1}{5}[\text{log}|6-log 1|]^{1}_{0}+\frac{3}{5}\sqrt{5}[\text{tan}^{\normalsize-1}\sqrt{5}x]^{1}_{0}$$
$$=\frac{1}{5}\text{log 6}+\frac{3}{\sqrt{5}}[\text{tan}^{\normalsize-1}\sqrt{5}(1)-\text{tan}^{\normalsize-1}\sqrt{5}(0)]\\=\frac{1}{5}\text{log 6}+\frac{3}{\sqrt{5}}\text{tan}^{\normalsize-1}\sqrt{5}$$
(∵ log 1 = 0 and tan–1 (0) = 0)
$$\textbf{15.\space}\int^{\textbf{1}}_{\textbf{0}}\space \textbf{xe}^{\textbf{x}^\textbf{2}}\textbf{dx.}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int^{1}_{0}xe^{x^{2}}dx.\\\text{Put}\space x^2=t\\\Rarr 2x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{2x}$$
When x = 0
$$\Rarr\space t=0\space\text{and\space when x=1}\Rarr t=1 \\\therefore\space\text{I}=\int^{1}_{0}xe^{t}\frac{dt}{2x}=\frac{1}{2}\int e^{t}dt=\frac{1}{2}[e^t]^{1}_{0}\\=\frac{1}{2}[e^1-e^0]=\frac{1}{2}[e-1]$$
$$\textbf{16.\space}\int^{\textbf{2}}_{\textbf{1}}\space\frac{\textbf{5x}^\textbf{2}}{\textbf{x}^\textbf{2}\textbf{+4x+3}}\textbf{dx}\\\textbf{Sol.\space}\text{let}\space\text{I}=\int^{2}_{1}\frac{5x^2}{x^2+4x+3}dx$$
Here, the degree of numerator and denominator is same, so on dividing numerator by denominator, we get
$$\frac{5x^2}{x^2+4x+3}=5-\frac{20x-15}{x^2+4x+3}\\\therefore\space\text{I}=\int^{2}_{1}\bigg[5-\frac{20x+15}{x^2+4x+3}\bigg]dx\\=\int^{2}_{1} 5dx-\int^{2}_{1}\frac{20x+15}{(x+1)(x+3)}dx$$
...(i)
$$\text{Let}\space\frac{20x+15}{(x+1)(x+3)}dx\\=\frac{A}{(X+1)}+\frac{B}{(X+2)}$$
On equating the coefficients of x and constant term on both sides, we get
20 = A + B ...(ii)
and
15 = 3A + B ...(iii)
On solving equations (ii) and (iii), w
e get
$$\Rarr\space 20x + 15 = A(x+3)+B(x+1)\\\Rarr\space 20x+15=Ax+3A+Bx+B$$
On equating the coefficients of x and constant term on both sides, we get
$$A=-\frac{5}{2},B=\frac{45}{2}\\\therefore\space \text{I}=5\int^{2}_{1}\space 1 dx+\frac{5}{2}\int^{2}_{1}\frac{1}{(x+1)}dx-\\\frac{45}{2}\int^{2}_{1}\frac{1}{(x+3)}dx\\\lbrack\text{from eq.(i)}\rbrack\\=\bigg[5x+\frac{5}{2}\text{log}|x+1|-\frac{45}{2}\text{log}|x+3|\bigg]^{2}_{1}\\= \begin{bmatrix}10+\frac{5}{2}\text{log}|3|-\frac{45}{2}\text{log}|5|-5-\\\frac{5}{2}\text{log}|2|+\frac{45}{2}\text{log}|4|\end{bmatrix}\\\Rarr\space\text{I}= 5+\frac{5}{2}\text{log}\begin{vmatrix}\frac{3}{2}\end{vmatrix}-\frac{45}{2}\text{log}\begin{vmatrix}\frac{5}{4}\end{vmatrix}\\\bigg[\because\space\text{m log a - m log b = m log}\bigg(\frac{a}{b}\bigg)\bigg]$$
$$\textbf{17.\space}\int^{\frac{\pi}{\textbf{4}}}_{\textbf{0}}\space(\textbf{2 sec}^\textbf{2}\textbf{x} \textbf{+ x}^\textbf{3}\textbf{+2})\textbf{dx.}\\\textbf{Sol.}\space\int^{\frac{\pi}{\textbf{4}}}_{\textbf{0}}(\text{2 sec}^\text{2}\text{x} + x^3+2)dx\\=2\int^{\frac{\pi}{4}}_{0}\text{sec}^2\space x dx + \int^{\frac{\pi}{4}}_{0}\space x^3 dx+\\2\int^{\frac{\pi}{\textbf{4}}}_{\textbf{0}}\space 1 dx\\=2[\text{tan x}]^{\frac{\pi}{4}}_{0}+\frac{1}{4}[x^4]^{\frac{\pi}{4}}_{0}+2[x]^{\frac{\pi}{4}}_{0}\\= 2\text{tan}\frac{\pi}{4}+\frac{1}{4}\bigg(\frac{\pi}{4}\bigg)^4+2\bigg(\frac{\pi}{4}\bigg)\\=2+\frac{\pi}{2}+\frac{\pi^4}{1024}$$
$$\textbf{18.\space}\int^{\pi}_{\textbf{0}}\bigg(\textbf{sin}^{\textbf{2}}\frac{\textbf{x}}{\textbf{2}}-\textbf{cos}^{\textbf{2}}\frac{\textbf{x}}{\textbf{2}}\bigg)\textbf{dx.}\\\textbf{Sol.}\space\int^{\pi}_{\textbf{0}}\bigg(\text{sin}^{2}\frac{x}{2}-\text{cos}^{2}\frac{x}{2}\bigg)dx-\\\int^{\pi}_{0}\bigg(\text{cos}^{2}\frac{\pi}{2}-\text{sin}^{2}\frac{x}{2}\bigg)dx\\=-\int^{\pi}_{0}\space\text{cos xdx}\\\lbrack\because\space\text{cos 2x = cos}^{2}x-\text{sin}^{2}x\rbrack\\=-\lbrack\text{sin x}\rbrack^{\pi}_{0}=-\lbrack\text{sin}\pi - \text{sin 0}\rbrack=0$$
$$\textbf{19.\space}\int^{\textbf{2}}_{\textbf{0}}\space\frac{\textbf{6x+3}}{\textbf{x}^\textbf{2}\textbf{+4}}\textbf{dx.}\\\textbf{Sol.}\space\text{Let}\space\text{I}=\int^{2}_{0}\frac{6x+3}{x^2+4}dx\\=\int^{2}_{0}\frac{6x}{x^2+4}dx+\int^{2}_{0}\frac{3}{x^2+4}dx\\\text{Put}\space x^2+4=t\\\Rarr\space 2x=\frac{dt}{dx}\\\Rarr\space dx=\frac{dt}{2x}$$
Lower limit, when x = 0, t = 0 + 4 = 4
upper limit, when x = 2, t = 4 + 4 = 8
$$\therefore\space\text{I}=\int^{8}_{4}\frac{6x}{t}\frac{dt}{2x}+\int^{2}_{0}\frac{3}{x^2+4}dx\\=3\int^{8}_{4}\frac{1}{t}dt+ 3\int^{2}_{0}\frac{1}{x^2+2^2}dx\\=3[\text{log t}]^{8}_{4}+\frac{3}{2}\bigg[\text{tan}^{\normalsize-1}\frac{x}{2}\bigg]^{2}_{0}\\\bigg[\because\space\int\frac{dx}{a^2+x^2}=\frac{1}{a}\text{tan}^{\normalsize-1}\frac{x}{a}\bigg]\\=3[\text{log}(8)-\text{log}(4)+\frac{3}{2}\bigg[\text{tan}^{\normalsize-1}\frac{2}{2}\bigg]]\\=\text{3 log}\bigg(\frac{8}{4}\bigg)+\frac{3}{2}×\frac{\pi}{4}\\\bigg[\because\space\text{log b - log a}=\text{log}\frac{b}{a}\bigg]$$
$$=\text{3 log 2}+\frac{3\pi}{8}$$
$$\textbf{20.\space}\int^{\textbf{1}}_{\textbf{0}}\bigg(\textbf{xe}^\textbf{x}\textbf{+}\textbf{sin}\frac{\pi \textbf{x}}{\textbf{4}}\bigg)\textbf{dx.}\\\textbf{Sol.\space}\int^{1}_{0}\bigg(xe^{x}+\text{sin}\frac{\pi.x}{4}\bigg)dx\\=\int^{1}_{0}xe^{x}dx+\int^{1}_{0}\text{sin}\bigg(\frac{\pi.x}{4}\bigg)dx\\=[xe^x-\int 1e^x dx]^{1}_{0}+\bigg[\frac{-\text{cos}\frac{\pi.x}{4}}{\frac{\pi}{4}}\bigg]^{1}_{0}$$
First integral solved by using the integration by parts and for second
$$\bigg(\int\text{sin xdx}=-\frac{\text{cos ax}}{a}\bigg)\\=[xe^x-e^x]^{1}_{0}-\frac{4}{\pi}\bigg[\text{cos}\bigg(\frac{\pi.x}{4}\bigg)\bigg]^{1}_{0}\\=(e-e)-(0-e^0)-\frac{4}{\pi}\bigg(\text{cos}\frac{\pi}{4}-\text{cos 0}\bigg)\\=-(\normalsize-1)-\frac{4}{\pi}\bigg(\frac{1}{\sqrt{2}}-1\bigg)=\\1-\frac{4}{\pi}\bigg(\frac{1-\sqrt{2}}{2}\bigg)×\frac{\sqrt{2}}{\sqrt{2}}\\=1+\frac{2}{\pi}(2-\sqrt{2})\\=1+\frac{4}{\pi}-\frac{2\sqrt{2}}{\pi}.$$
Choose the correct answer.
$$\textbf{21.}\int^{\sqrt{\textbf{3}}}_{\textbf{1}}\bigg(\frac{\textbf{1}}{\textbf{1+x}}\bigg)\textbf{dx\space equals :}\\\textbf{(a)\space}\frac{\pi}{\textbf{3}}\\\textbf{(b)\space}\frac{\textbf{2}\pi}{\textbf{3}}\\\textbf{(c)\space}\frac{\pi}{\textbf{6}}\\\textbf{(d)\space}\frac{\pi}{\textbf{12}}\\\textbf{Sol.}\space\text{(d)\space}\frac{\pi}{12}\\\int^{\sqrt{3}}_{1}\frac{1}{1+x^2}dx=\int^{\sqrt{3}}_{1}\frac{1}{x^2+1}dx\\=\bigg[\frac{1}{1}\text{tan}^{\normalsize-1}\bigg(\frac{x}{1}\bigg)\bigg]^{\sqrt{3}}_{1}$$
$$=\text{tan}^{\normalsize-1}\sqrt{3}-\text{tan}^{\normalsize-1}1\\\bigg(\because\space\int\frac{dx}{1+x^2}=\text{tan}^{\normalsize-1}x\bigg)\\=\frac{\pi}{3}-\frac{\pi}{4}\\\Rarr\space\frac{4\pi-3\pi}{12}=\frac{\pi}{12}.$$
$$\textbf{22.\space}\int^{\frac{\textbf{2}}{\textbf{3}}}_{\textbf{0}}\frac{\textbf{1}}{\textbf{4+9x}^\textbf{2}}\textbf{dx}\\\textbf{(a)\space}\frac{\pi}{\textbf{6}}\\\textbf{(b)\space}\frac{\pi}{\textbf{12}}\\\textbf{(c)\space}\frac{\pi}{\textbf{24}}\\\textbf{(d)\space}\frac{\pi}{\textbf{4}}\\\textbf{Sol.\space}\text{(c)}\space\frac{\pi}{24}\\=\int^{\frac{2}{3}}_{0}\frac{1}{4+9x^2}dx=\\\frac{1}{9}\int^{\frac{2}{3}}_{0}\frac{1}{\frac{4}{9}+x^2}dx$$
$$=\frac{1}{9}\int^{\frac{2}{3}}_{0}\frac{1}{\bigg(\frac{2}{3}\bigg)^2+x^2}dx\\=\frac{1}{9}.\frac{1}{2/3}\bigg[\text{tan}^{\normalsize-1}\bigg(\frac{x}{2/3}\bigg)\bigg]^{\frac{2}{3}}_{0}\\\bigg[\because\space\int\frac{dx}{a^2+x^2}=\frac{1}{a}\text{tan}^{\normalsize-1}\frac{x}{a}\bigg]\\=\frac{1}{6}\bigg[\text{tan}^{\normalsize-1}\bigg(\frac{3x}{2}\bigg)\bigg]^{2/3}_{0}\\=\frac{1}{6}\bigg[\text{tan}^{\normalsize-1}\bigg(\frac{3}{2}.\frac{2}{3}\bigg)-\text{tan}^{\normalsize-1}0\bigg]\\=\frac{1}{6}(\text{tan}^{\normalsize-1}1-0)=\frac{1}{6}.\frac{\pi}{4}=\frac{\pi}{24}.$$
Share page on
NCERT Solutions Class 12 Mathematics
- Chapter 1 Relations and Functions
- Chapter 2 Inverse Trigonometric Functions
- Chapter 3 Matrices
- Chapter 4 Determinants
- Chapter 5 Continuity and Differentiability
- Chapter 6 Application of Derivatives
- Chapter 7 Integrals
- Chapter 8 Applications of the Integrals
- Chapter 9 Differential Equations
- Chapter 10 Vectors
- Chapter 11 Three-Dimensional Geometry
- Chapter 12 Linear Programming
- Chapter 13 Probability
CBSE CLASS 12 NCERT SOLUTIONS
- NCERT Solutions Class 12 English Core
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Business Studies
- NCERT Solutions Class 12 Mathematics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Geography
- NCERT Solutions Class 12 History
- NCERT Solutions Class 12 Political Science
CBSE CLASS 12 SYLLABUS
- CBSE Class 12 English core Syllabus
- CBSE Class 12 Mathematics Syllabus
- CBSE Class 12 Physics Syllabus
- CBSE Class 12 Chemistry Syllabus
- CBSE Class 12 Biology Syllabus
- CBSE Class 12 Accountancy Syllabus
- CBSE Class 12 Business Studies Syllabus
- CBSE Class 12 Economics Syllabus
- CBSE Class 12 History Syllabus
- CBSE Class 12 Geography Syllabus
- CBSE Class 12 Political science Syllabus
- CBSE Class 12 Sociology Syllabus
- CBSE Class 12 Psychology Syllabus
- CBSE Class 12 Physical education Syllabus
- CBSE Class 12 Applied mathematics Syllabus
- CBSE Class 12 History of Indian Arts Syllabus
CBSE CLASS 12 Notes
- CBSE Class 12 Physics Notes
- CBSE Class 12 Chemistry Notes
- CBSE Class 12 Biology Notes
- CBSE Class 12 Maths Notes
- CBSE Class 12 Accountancy Notes
- CBSE Class 12 Business Studies Notes
- CBSE Class 12 Economics Notes
- CBSE Class 12 History Notes
- CBSE Class 12 Geography Notes
- CBSE Class 12 Political Science Notes