Oswal 61 Sample Question Papers ICSE Class 10 Maths Solutions

Section-A

Answer 1.

(i) (b) ₹ 600

 Explanation :

$$\text{MV = P × n + P ×}\\\frac{n(n+1)}{2×12}×\frac{r}{100}\\\Rarr\space\\\text{7,668 = P}\bigg(12 + \frac{12×(12+1)}{2×12}×\frac{12}{100}\bigg)$$

[ n = 1year = 12 months]

$$\Rarr\space 7,668 = \text{P}\bigg(12 + \frac{78}{100}\bigg)\\\Rarr\space\text{7,668 = P}\bigg(\frac{1,278}{100}\bigg)\\\Rarr\space\text{P = 600}$$

$$\textbf{(ii)\space}\textbf{(b)}\begin{vmatrix}\textbf{7} &\textbf{11}\\\textbf{7} &\textbf{3}\end{vmatrix}$$

 Explanation :

Given,

$$\text{A} =\begin{bmatrix}\normalsize-2 &3\\4 &1\end{bmatrix}\space\text{and B =}\begin{bmatrix}1 &2\\3 &5\end{bmatrix}\\\text{AB} = \begin{bmatrix}\normalsize-2 &3\\4 &1\end{bmatrix}\begin{bmatrix}1 &2\\3 &5\end{bmatrix}\\=\\\begin{bmatrix}-2×1 +3×3 &-2×2+3×5\\4×1 +1×3 &4×2+1×5\end{bmatrix}\\=\begin{bmatrix}7 &11\\7 &13\end{bmatrix}$$

(iii) (c) 10 : 21

 Explanation :

Compounded ratio of 2 : 3 and 5 : 7

$$=\frac{2}{3}×\frac{5}{7} =\frac{10}{21}$$

(iv) (c) 6

 Explanation :

Given : (x – 1) is a factor of (x3 – kx2 + 11x – 6)

Since, (x – 1) is a factor, so, using Remainder’s theorem,

Putting the value 1 in place of x, the remainder equal to zero.

1 – k + 11 – 6 = 0

⇒ k = 6

(v) (b) –2

 Explanation :

$$\text{Given: x =}\frac{1}{2}\space\text{as root of} \\\text{the equation x}^{2} -mx-\frac{5}{4} = 0.\\\therefore\space\bigg(\frac{1}{2}\bigg)^{2}-m\bigg(\frac{1}{2}\bigg)-\frac{5}{4}=0\\\Rarr\space\frac{1}{4}-\frac{m}{2}-\frac{5}{4}= 0\\\Rarr\space\text{m = –2}$$

(vi) (b) {x : x ∈ R, –2 < x < 3}

(vii) (c) 4.5 cm

 Explanation :

In similar triangles, the corresponding sides are in proportion.

Given: ΔABC ~ ΔDEF

$$\therefore\space\frac{\text{AB}}{\text{DE}} =\frac{\text{BC}}{\text{EF}} =\frac{\text{AC}}{\text{DF}}\\\Rarr\space\frac{\text{AB}}{\text{DE}} = \frac{\text{AC}}{\text{DF}}\\\Rarr\space\frac{x -0.5}{9} =\frac{1.5x}{3x}\\\Rarr\space x -0.5 = 4.5\\\Rarr\space x = 5\space\text{cm}$$

So, length of AB = (x – 0.5)

= 5 – 0.5

= 4.5 cm

(viii) (d) 990 cm2

 Explanation :

$$\text{Radius (r) =}\frac{1}{2}×\text{diameter}\\=\frac{21}{2}\space\text{cm}$$

Height (h) = 15 cm

∴ Curved surface area = 2πrh

$$= 2×\frac{22}{7}×\frac{21}{2}×15$$

= 990 cm2.

(ix) (c) (1, – 1)

 Explanation :

If A′(x, y) be the reflection of point A(5, – 3) in the point P(3, – 2), then P will be mid-point of AA′.

ds_x_ans1_ix

$$x =\frac{x_1 + x_2}{2}\space\text{and y =}\frac{y_{1} + y_{2}}{2}\\3 =\frac{x+5}{2}\space\text{and}-2 =\frac{y-3}{2}$$

⇒ x = 1 and y = – 1

∴ Reflection point will be (1, – 1).

(x) (b) 120°

 Explanation :

reflex ∠AOC = 360° – 120° = 240°

since, the angle subtended at the centre by an arc of a circle is double the angle which this arc subtends at any remaining part of the circumference.

∴ reflex ∠AOC = 2 × ∠ABC

$$\Rarr\space\angle\text{ABC} =\frac{1}{2}\text{reflex}\space\angle\text{AOC}\\=\frac{1}{2}×240\degree = 120\degree$$

(xi) (b) 1

 Explanation :

Given, m = sec A + tan A

and, n = sec A – tan A

By multiplying to each other, we get

mn = (sec A + tan A) (sec A – tan A)

mn = sec2A – tan2A = 1 (using identity)

(xii) (b) 20-30

 Explanation :

Class Frequency Cumulative frequency (less than)
0-10 9 9
10-20 3 12
20-30 12 24
30-40 4 28
40-50 12 40
Total (N) 40

N = 40

$$\therefore\space\frac{\text{N}}{2} =\frac{\text{40}}{2} = 20 $$

20 belongs to the class 20-30.

Hence, the median class is 20-30.

$$\text{(xiii) (d)\space}\frac{35}{36}$$

 Explanation :

The possible outcomes are {(1, 1), (1, 2), (1, 3), … (6, 6)}

Total No. of possible outcomes = 36

The maximum number as sum less than 12 is 6 + 5 = 11

∴ No. of favourable outcomes = 35

$$\text{Hence, P(getting sum less than 12)}\\=\frac{35}{36}.$$

(xiv) (d) 3 : 4

 Explanation :

Let the X-axis divides the given line in the ratio m : 1. Then the co-ordinates of the point of division are:

$$x =\frac{2m-3}{m+1}\space\text{and y} =\frac{-8m +6}{m+1}$$

Since, this is a point on the X-axis. So,

$$\frac{-8m +6}{m+1} = 0\\\Rarr\space\text{– 8m + 6 = 0 or m =}\frac{3}{4}$$

Hence, the X-axis divides the line internally in the ratio 3 : 4.

(xv) (a) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

 Explanation :

We have, t2 + t7 = 30

$$\Rarr\space\text{(a + d) + (a + 6d) = 30}\\\Rarr\space\text{2a + 7d = 30}\qquad\text{…(i)}$$

Also, t15 = 2t8 – 1

$$\Rarr\space a+14d = 2(a + 7d)-1\\\Rarr\space a=1$$

Putting a = 1 in eq. (i), we get

d = 4

∴ The A.P. is 1, 1 + 4, 1 + 2(4), … i.e., 1, 5, 9, …

Answer 2.

(i) (a) Since, number of months (n) = 24 and rate of interest (r) = 6%

$$\text{I = P}×\frac{n(n+1)}{2}×\frac{r}{100}\\\Rarr\space 1200 =\text{P}×\frac{24(24+1)}{2×12}×\frac{6}{100}\\\Rarr\space\text{P =}\frac{1,200×24×100}{6×24×25}$$

= ₹ 800

∴ Monthly instalment = ₹ 800 Ans.

(b) Sum deposited = ₹ 800 × 24

= ₹ 19200

Amount on maturity = ₹ 19,200 + ₹ 1,200

= ₹20,400 Ans.

(ii) Given, a, b, c, d are in continued proportion.

$$\therefore\space\frac{a}{b} =\frac{b}{c}= \frac{c}{d}=k\space\text{(say)}\\\Rarr\space\text{c = kd, b = kc = k}^{2}d,\\\text{a =kb = k}^{3}\text{d}\\\text{Now,\space L.H.S = a:d}=\frac{a}{d} =\frac{k^{3}d}{d} = k^{3} $$

R.H.S. = Triplicate ratio of (a – b) : (b – c)

$$=\frac{(a-b)^{3}}{(b-c)^{3}} =\bigg(\frac{k^{3}d -k^{2}d}{k^{2}d - kd}\bigg)^{3}\\=\bigg(\frac{k^{2}d(k-1)}{kd(k-1)}\bigg)^{3} = k^{3}$$

Thus, L.H.S. = R.H.S.  Hence Proved.

(iii) (i) L.H.S.

$$=\sqrt{\frac{\text{1 - \text{cos}}\space\theta}{1 + \text{cos}\space\theta}×\frac{\text{1 - \text{cos}}\space\theta}{\text{1 - cos}\theta}}\\=\sqrt{\frac{\text{(1 - cos}\space \theta)^{2}}{\text{1 - cos}^{2}\theta}}\\=\frac{\text{1 - cos}\theta}{\sqrt{1 - \text{cos}^{2}\theta}}\\=\frac{1 -\text{cos}\space\theta}{\sqrt{\text{sin}^{2}\theta}}$$

$$=\frac{\text{1-cos}\space\theta}{\text{sin}\space\theta}\\=\frac{1}{\text{sin}\space\theta} -\frac{\text{cos}\space\theta}{\text{sin}\space\theta}$$

= cosec θ – cot θ

= R.H.S.   Hence Proved.

$$\text{(ii)\space L.H.S =}\\\sqrt{\frac{\text{1 + sin}\space\theta}{\text{1 - sin}\space\theta}×\frac{\text{1 + sin}\space\theta}{\text{1 + sin}\space\theta}}\\=\sqrt{\frac{(1 + sin\space\theta)^{2}}{\text{1 - sin}^{2}\theta}}\\=\sqrt{\frac{(1 + sin\space\theta)^{2}}{\text{cos}^{2}\theta}}\\=\frac{\text{1 + sin}\space\theta}{\text{cos}\space\theta}\\=\frac{1}{\text{cos}\space\theta} + \frac{\text{sin\space}\theta}{\text{cos}\space\theta}$$

= sec θ + tan θ = R.H.S. Hence Proved.

Answer 3.

(i) Given, Surface area of sphere = 616 cm2

$$\Rarr\space\text{4}\pi r^{2} = 616\\\Rarr\space 4×\frac{22}{7}×r^{2} = 616\\\Rarr\space r^{2} =\frac{616×7}{4×22} = 49\\\Rarr\space r = 7\space\text{cm.}\\\therefore\space\text{Volume(V}_{1}) =\frac{4}{3}\pi r^{3}\\=\frac{4}{3}×\frac{22}{7}×7^{3}\\=\frac{4}{3}×\frac{22}{7}×343\space\text{cm}^{3}$$

Diameter of small sphere = 3.5 cm

$$\therefore\space\text{Its radius (r}_1) =\frac{3.5}{2}\text{cm}\\\therefore\space\text{Its volume (V}_2) =\frac{4}{3}\pi r^{3}_{1}\\=\frac{4}{3}×\frac{22}{7}×\bigg(\frac{3.5}{2}\bigg)^{3}\\=\frac{4}{3}×\frac{22}{7}×\frac{343}{8×8}\text{cm}^{3}\\\therefore\space\text{No. of smaller spheres recast}\\ =\frac{\text{V}_{1}}{\text{V}_{2}}\\=\frac{\frac{4}{3}×\frac{22}{7}×343}{\frac{4}{3}×\frac{22}{7}×\frac{343}{8×8}} = 64.\space\textbf{Ans.}$$

(ii) (i) Co-ordinates of the points A, B and C are (1, 3), (– 3, – 2) and (3, 0) respectively.

$$\text{(ii) Slope of AB =}\frac{\text{-2-3}}{-3-1}\\=\frac{5}{4}.$$

(iii) Line through C (3, 0) and parallel to AB

$$\therefore\space\text{Slope =}\frac{5}{4}.$$

∴ Equation to the line is

y – y1 = m(x – x1)

$$\Rarr\space\text{y - 0} =\frac{5}{4}(x-3)\\\Rarr\space\text{4y = 5x – 15}$$

This line intersects Y-axis at D.

∴ On solving

4y = 5x – 15

and x = 0    (Equation to Y-axis)

we get, 4y = – 15

$$\Rarr\space y =-\frac{15}{4}\\\therefore\space\text{Co-ordinates of point D are}\\\bigg(0,\frac{\normalsize-15}{4}\bigg).\space\textbf{Ans.}$$

(iii) (a) Coordinates of P′ = (3, – 4)

Coordinates of O′ = (6, 0)

(b) PP′ = 8 units, OO′ = 6 units

$$\textbf{(c)\space}\text{OP}= \sqrt{3^{2} + 4^{2}}\\=\sqrt{25} = \text{5 units}$$

∴ Perimeter of POP′O′ = 4 × 5 = 20 units

(d) Special name of POP′O′ is rhombus.

Scale : At X-axis : 1 cm = 1 unit

At Y axis : 1 cm = 1unit

ds_x_ans3_d

Section-B

Answer 4.

(i) According to the question,

GST on ticket of ₹ 90 = 18% of 90

$$=\frac{18}{100}×90$$

= ₹ 16.20

GST on ticket of ₹ 140 = 28% of 140

$$=\frac{28}{100}×140$$

= ₹ 39.20

Difference between both GST = 39.20 – 16.20

= ₹23.00 Ans.

(ii) Given equation is, x2 – 3 (x + 3) = 0

⇒ x2 – 3x – 9 = 0

On comparing the equation with ax2 + bx + c = 0, we get

∴ a = 1, b = – 3, c = – 9

b2 – 4ac = (– 3)2 – 4 (1) (– 9)

= 9 + 36

= 45

$$x = \frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\\=\frac{-(-3)\pm\sqrt{45}}{2×1}\\=\frac{3\pm3\sqrt{5}}{2}\\x =\frac{3 + 3×2.236}{2}\space\text{and}\space\\x =\frac{3-3×2.236}{2}\\x =\frac{3 + 6.708}{2}\space\text{and}\\ x =\frac{3 -6.708}{2}$$

$$x =\frac{9.708}{2}\space\text{and}\space x =-\frac{3.708}{2}$$

x = 4·854 and x = – 1·854

∴ x = 4·9 and x = – 1·9 Ans.

(iii)

Number of match sticks (xi) Number of boxes (fi) fi xi
35 6 210
36 10 360
37 18 666
38 25 950
39 21 819
40 12 480
41 8 328
Σfi = 100 Σfi xi = 3813

$$\textbf{(i)}\space\text{Mean = }\frac{Sf_ix_i}{Sf_i} =\frac{3813}{100}$$

= 38·13 ≈ 38·1 Ans.

(ii) Now, the number of extra sticks to be added.

= 39 × 100 – 38·13 × 100

= 3900 – 3813 = 87 Ans.

Answer 5.

$$\text{(i)\space Given,\space}\begin{bmatrix}4 &2\\\normalsize-1 &1\end{bmatrix}\text{M = 6}\text{I}\\\Rarr\space\begin{bmatrix}4 &2\\\normalsize-1 &1\end{bmatrix}\text{M = 6}\begin{bmatrix}1 &0\\0 &1\end{bmatrix}\\\Rarr\space\begin{bmatrix}4 &2\\\normalsize-1 &1\end{bmatrix}\text{M} = \begin{bmatrix}6 &0\\0 &6\end{bmatrix}\\\text{...(i)}$$

(i) (2 × 2) (m × n) = (2 × 2) → Order of matrix, M = 2 × 2. Ans.

$$\textbf{(ii)\space}\text{Let,\space M =}\begin{bmatrix}a &b\\c &d\end{bmatrix}\\\therefore\space\begin{bmatrix}4 &2\\\normalsize-1 &1\end{bmatrix}\begin{bmatrix}a &b\\c &d\end{bmatrix} =\begin{bmatrix}6 &0\\0 &6\end{bmatrix}\\\text{[using (i)]}\\\Rarr\space\begin{bmatrix}4a +2c &4b +2d\\-a+c &-b+d\end{bmatrix} =\begin{bmatrix}6 &0\\0 &6\end{bmatrix}$$

∴ 4a + 2c = 6 ...(ii)

– a + c = 0 ...(iii) × 4

Solving equations (ii) and (iii),

4a + 2c = 6

– 4a + 4c = 0

6c = 6

$$\Rarr\space\text{c = 1}$$

From equation (iii),

– a + 1 = 0

⇒ a = 1

and 4b + 2d = 0 ...(iv)

⇒ – b + d = 6 ...(v) × 4

Solving equations (iv) and (v),

4b + 2d = 0

– 4b + 4d = 24

6d = 24

⇒ d = 4

From equation (iv),

– b + 4 = 6

⇒ – b = 2

⇒ b = – 2

$$\therefore\space\text{M =}\begin{bmatrix}1 &\normalsize-2\\1 &4\end{bmatrix}\space\textbf{Ans.}$$

(ii) Let, f (x) = x3 + (kx + 8) x + k.

By Remainder theorem,

when, f (x) is divided by (x + 1).

Remainder

f (– 1) = (– 1)3 + {k (– 1) + 8} (– 1) + k

= – 1 + (– k + 8) (– 1) + k

= – 1 + k – 8 + k

= 2k – 9

when, f (x) is divided by (x – 2).

Remainder,

f (2) = (2)3 + (k.2 + 8) 2 + k

= 8 + 4k + 16 + k

= 5k + 24

Also, sum of remainders = 1 (Given)

f (– 1) + f (2) = 1

$$\Rarr\space 2k-9+5k+24 = 1\\\Rarr\space 7k+15=1\\\Rarr\space 7k =1-15\\\Rarr\space k =\frac{-14}{7} =-2$$

Ans.

(iii) Given, AC is diameter, BC||AE, and ∠BAC = 50°

(i) ∠ABC = 90° (Q Angle at circumference of a semicircle)

In ΔABC,

∴ ∠ACB + ∠BAC + ∠ABC = 180° (Angles sum property)

⇒ ∠ACB + 50° + 90° = 180°

⇒ ∠ACB = 180° – 140°

∠ACB = 40° Ans.

(ii) ∠CAE = ∠ACB (Alternate angles as BC || AE)

= 40°

∴ ∠EDC + ∠CAE = 180° (Sum of opposite angles of a cyclic quadrilateral is 180°)

⇒ ∠EDC + 40° = 180°

⇒ ∠EDC = 180° – 40°

∠EDC = 140° Ans.

(iii) ∠BEC = ∠BAC (Angles on same segment are equal)

= 50° Ans.

Now, ∠BAE = ∠BAC + ∠CAE

= 50° + 40°

= 90°

We know that, if an angle of a triangle in a circle is 90°. Then, the hypotenuse must be the diameter of the circle.

Hence, BE is a diameter ( ∠BAE = 90°)

Hence Proved.

Answer 6.

(i) (i) y = x + 1

⇒ m1 = tan θ1 = 1 = tan 45°

⇒ θ1 = 45°.

$$\text{(ii)\space y =}\sqrt{3}x-1\\\Rarr\space m_{2} =\text{tan}\space\theta_{2} =\sqrt{3} =\text{tan 60\degree}\\\Rarr\space\theta_{2}= 60\degree.$$

(iii) Exterior angle = Sum of interior opposite angles

∴ θ = θ2 – θ1

= 60° – 45°

= 15°. Ans.

(iv) Put y = 0 in y = x + 1, we get

0 = x + 1

⇒ x = – 1

∴ The required point is (– 1, 0). Ans.

$$\text{(v)\space}\text{Put x = 0 in}\space y =\sqrt{3}x-1,\\\text{we get y =-1}$$

∴ The required point is (0, – 1). Ans

(ii) We have,

$$\frac{\text{tan A}}{\text{1 - cot A}} +\frac{\text{cot A}}{\text{1 - tan A}}\\=\text{sec A cosec A +1}\\\text{L.H.S =}\frac{\text{tan A}}{\text{1 - cot A}} + \frac{\text{cot A}}{\text{1 - tan A}}\\=\frac{\frac{\text{sin A}}{\text{cos A}}}{\frac{\text{1 - cos A}}{sin A}} + \frac{\frac{\text{cos A}}{\text{sin A}}}{\frac{\text{1 - sin A}}{\text{cos A}}}\\=\frac{\text{sin A}}{\text{cos A}}×\frac{\text{sin A}}{\text{sin A - cos A}} +\\\frac{\text{cos A}}{\text{sin A}}×\frac{\text{cos A}}{\text{cos A - sin A}}\\=\frac{\text{sin}^{2}\text{A}}{\text{cos A}(\text{sin A - cos A})} -\\\frac{\text{cos}^{2}A}{\text{sin A(sin A - cos A)}} $$

$$=\frac{\text{sin}^{3}\text{A} -\text{cos}^{3}\text{A}}{\text{sin A cos A}(\text{sin A - cos A})}\\=\\\frac{(\text{sin A - cos A})(\text{sin}^{2}\text{A} + \text{sin A cos A + cos}^{2}\text{A})}{\text{sin A cos A(sin A - cos A)}}\\\lbrack\because\space a^{3}- b^{3} =(a-b)(a^{2} + ab+ b^{2})\rbrack\\=\frac{\text{1 + sin A × cos A}}{\text{sin A cos A}}\\=\frac{1}{\text{cos A sin A}} + \frac{\text{sin A cos A}}{\text{sin A cos A}}\\\lbrack\because\space\text{cos}^{2}A + \text{sin}^{2}A =1\rbrack$$

= sec A cosec A + 1 = R.H.S.

Hence Proved.

(iii) Let a and d be the first term and common difference of the given A.P. respectively

Then, a4 = 8 and a6 = 14

⇒ a + 3d = 8 ...(i)

and a + 5d = 14 ...(ii)

On subtracting equation (i) from (ii), we get

2d = 6

⇒ d = 3

On putting d = 3 in equation (i), we get

a + 3 × 3 = 8

⇒ a = 8 – 9 = – 1

(a) First term (a) = – 1. Ans.

(b) Common difference (d) = 3. Ans.

(c) Sum of first 20 terms (S20)

$$\because\space\text{S}_{n} =\frac{n}{2}\lbrack2a + (n-1)d\rbrack\\\text{S}_{20} =\frac{20}{2}\lbrack2×(\normalsize-1) + (20-1)×3\rbrack$$

= 10 (– 2 + 57)

= 550 Ans.

Answer 7.

(i) Here, C.P. of x articles = ₹1200

$$\therefore\space\text{C.P. of 1 article =}\space ₹\frac{1200}{x}\\\therefore\space\text{S.P. of 1 article} =\\ ₹\bigg(\frac{1200}{x} + 2\bigg)$$

Since, 10 articles were damaged, the number of articles left = x – 10.

$$\therefore\space\text{Total S.P. =}\\\text{ ₹ (x – 10)}\bigg(\frac{1200}{x} + 2\bigg)$$

Profit = ₹60

$$\therefore\space(x-10)\bigg(\frac{1200}{x} + 2\bigg)\\-1200 = 60\\\Rarr\space(x-10)\bigg(\frac{1200 + 2x}{x}\bigg)\\ = 1260$$

⇒ (x – 10)(1200 + 2x) = 1260x

⇒ 1200x + 2x2 – 12000 – 20x – 1260x = 0

⇒ 2x2 – 80x – 12000 = 0

⇒ x2 – 40x – 6000 = 0

⇒ x2 – 100x + 60x – 6000 = 0

⇒ x(x – 100) + 60(x – 100) = 0

⇒ (x – 100)(x + 60) = 0

⇒ x – 100 = 0 or x + 60 = 0

⇒ x = 100 or x = – 60

∴ Number of articles are 100

( x cannot be negative). Ans.

(ii)

Wages (in ₹) No. of workers Cumulative Frequency
400 – 450 2 2
450 – 500 6 8
500 – 550 12 20
550 – 600 18 38
600 – 650 24 62
650 – 700 13 75
700 – 750 5 80
n = 80
ds_x_ans7_ii

$$\text{(a)\space Median wage} =\frac{n}{2}\text{th value}\\=\frac{80}{2}\text{th value}$$

= 40th value

= ₹ 600. Ans.

$$\text{(b) Lower quartile =}\frac{n}{4}\\\text{th value =}\\\text{20th value = ₹ 550}\space\textbf{Ans.}$$

(c) No. of workers earning more than ₹ 625 daily = 80 – 51 = 29. Ans.

Answer 8.

$$\text{(i)\space}\frac{-x}{3}-4\leq\frac{x}{2}-\frac{7}{3}\lt-\frac{7}{6},\\\text{x}\epsilon \text{R}\\\frac{\normalsize-x}{3}-4\leq\frac{x}{2}-\frac{7}{3}\\\frac{x}{2} - \frac{7}{3}\lt\frac{\normalsize-7}{6}\\\frac{\normalsize-x}{3}-\frac{x}{2}\leq\frac{\normalsize-7}{3} + 4\\\frac{x}{2}\lt\frac{\normalsize-7}{6} + \frac{7}{3}\\=\frac{-2x-3x}{6}\leq\frac{-7+12}{3}\\\frac{x}{2}\lt\frac{-7+14}{6}$$

$$\frac{-5x}{6}\leq\frac{5}{3}\space\\\frac{x}{2}\lt\frac{7}{6}\\x\geq-\frac{5×6}{5×3}\qquad x\lt\frac{7×2}{6}\\x\geq-2\qquad x\lt\frac{7}{3} $$

x ≥ –2        x < 2.3

– 2 ≤ x < 2.3

ds_x_ans8_i

(ii)

Sol.

Distance in m Frequency (f) c.f.
12 – 13 3 3
13 – 14 9 12
14 – 15 12 24
15 – 16 9 33
16 – 17 4 37
17 – 18 2 39
18 – 19 1 40
ds_x_ans8_ii

Note : Instead of 2 cm = 1 m and 2 cm = 5 students, we have used 1 cm = 1 m and 1 cm = 5 students on X and Y axes, respectively.

$$\text{(i) Median =}\space\bigg(\frac{N}{2}\bigg)^{\text{th}}\space\text{term}\\=\bigg(\frac{40}{2}\bigg)^{\text{th}}\space\text{term}$$

= 20th term

On the graph, through a point 20 on y-axis, draw a horizontal line which meets the ogive at point A.
Through A, draw a vertical line which meets the x-axis at 14.7.

∴ Median = 14.7    Ans.

(ii) Upper quartile (Q3) =

$$\bigg(\frac{3N}{4}\bigg)^{\text{th}}\space\text{term}\\=\bigg(\frac{3×40}{4}\bigg)^{th}\space\text{term}$$

= 30th term

= 15.7 Ans.

(iii) Number of students who cover more than

$$16\frac{1}{2}m = 40-35 = 5 $$

Ans.

(iii) (a) In ΔADF and ΔCFE

∠DAF = ∠FCE   [Alternate angles]

∠AFD = ∠CFE [Vertically opposite angles]

∠ADF = ∠CEF [Alternate angles]

∴ ΔADF ~ ΔCEF [By A.A. axiom]

Hence Proved.

(b) ΔADF ~ ΔCEF

$$\therefore\space\frac{\text{AD}}{\text{CE}} =\frac{\text{AF}}{\text{FC}}\qquad\text{...(i)}$$

We have, AF : AC = 5 : 8, CE = 6 cm

Let AF = 5x, AC = 8x

∴ FC = AC – AF

= 8x – 5x = 3x

$$\text{From (i),\space}\frac{\text{AD}}{6} = \frac{\text{5x}}{3x}$$

⇒ AD = 10 cm.   Ans.

Answer 9.

(i) Given, Total number of outcomes i.e., n(S) = 25

(i) Let A be the event of getting an odd number.

∴ A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}

∴ n(A) = 13

$$\therefore\space\text{P(A) =}\frac{\text{n(A)}}{\text{n(S)}} =\frac{13}{25}$$

Ans.

(ii) Let B be the event of getting a number divisible by 2 and 3 both.

∴ B = {6, 12, 18, 24}

∴ n(B) = 4

$$\therefore\space\text{P(B) =}\frac{\text{n(B)}}{\text{n(S)}} =\frac{4}{25}$$

Ans.

(iii) Let C be the event of getting a number less than 16.

∴ C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

∴ n(C) = 15

$$\therefore\space\text{P(C) =}\frac{\text{n(C)}}{\text{n(S)}} =\frac{15}{25} =\frac{3}{5}$$

Ans.

(ii) Time of ascent = 1 minute 28 seconds

= 88 seconds

Distance moved by the bucket = Speed × Time

= [1.1 × 88] metre

= 96.8 metre

Circumference of wheel = 2πr

$$= 2×\frac{22}{7}×\frac{77}{2}\text{cm}\\\begin{bmatrix}\because\space r =\frac{d}{2}=\frac{77}{2}\text{cm}\end{bmatrix}$$

= 242 cm = 2.42 metre

∴ Number of complete revolutions the wheel makes in raising the bucket

$$= \frac{\text{Distance}}{\text{Circumference}}\\=\bigg(\frac{96.8}{2.42}\bigg) = 40.$$

Ans.

(iii) (a) In the figure, ∠DAB + ∠BCD = 180°

[Opposite angles of a cyclic quadrilateral]

∴ ∠DAB + 130° = 180°

⇒ ∠DAB = 180° – 130°

⇒ ∠DAB = 50°. Ans.

(b) Now, ∠ADB = 90° [Angle in semi-circle]

In DADB,

∠DAB + ∠ADB + ∠DBA = 180° [Angle sum property]

⇒ 50° + 90° + ∠DBA = 180°

⇒ ∠DBA = 180° – 140°

⇒ ∠DBA = 40°. Ans.

Answer 10.

(i) We have, (2x – 5) : (3x + 1) is duplicate ratio of 2 : 3.

∴ (2x – 5) : (3x + 1) = 22 : 32

$$\Rarr\space\frac{\text{2x - 5}}{\text{3x+1}} =\frac{4}{9}$$

⇒ 18x – 45 = 12x + 4

⇒ 18x – 12x = 4 + 45

⇒ 6x = 49

$$\Rarr\space x =\frac{49}{6}= 8\frac{1}{6}\space\textbf{Ans.}$$

(ii) Given radius = 3.5 cm

Steps of construction :

1. Draw PO = 6 cm. Draw a circle of radius 3.5 cm with centre O.

2. Draw perpendicular bisector of OP which intersects OP at M.

3. Taking MO radius and M as centre, draw arcs which cut the circle at A and B.

4. Join AP and BP which are the required tangents.

5. Measure the length of tangents PA = PB = 4.5 cm

(iii) From right angle Δ ADC,

$$\frac{\text{AD}}{\text{CD}} =\text{tan 36}\degree\\\Rarr\space\frac{100}{y} = \text{tan 36\degree}\\\Rarr\space y =\frac{100}{\text{tan 36}\degree}\\=\frac{100}{0·7265}\\\Rarr\space y = 137.646\space m$$

ds_x_ans10_iii

From right angle Δ ADB,

$$\frac{100}{x} =\text{tan 48}\degree\\\Rarr\space x =\frac{100}{1.1106} =\text{90.04 m.} $$

∴ Distance between the ships

= x + y

= 137·638 + 90·04

= 227·678 m

= 228 m. (approx.).

ICSE 61 Sample Question Papers

All Subjects Combined for Class 10 Exam 2024

The dot mark field are mandatory, So please fill them in carefully
To download the Sample Paper (PDF File), Please fill & submit the form below.