Oswal 36 Sample Question Papers ISC Class 12 Maths Solutions

Section-A

Answer 1.

(i) (b) (9, 6) ∈ R

 Explanation :

Given, R = {(x, y) : x = y + 3, y > 5}

For y = 6, x = 6 + 3 = 9

(9, 6) ∈ R.

(ii) (c) 8

 Explanation :

Here, n = n(A) = 3, m = n(B) = 2

No. of functions = mn = 23 = 8.

(iii) (a) 1/2

 Explanation :

$$\text{We have, sin}\bigg[\frac{\pi}{2}-\text{sin}^{-1}\bigg(\frac{-\sqrt{3}}{2}\bigg)\bigg]\\\qquad\text{Let} \space\space \text{sin}^{-1}\bigg(\frac{-\sqrt{3}}{2}\bigg)=x\\\qquad⇒ \text{sin x} =\frac{-\sqrt{3}}{2}\\\qquad=\text{− sin }\frac{\pi}{3}=\text{sin}\bigg(\frac{\pi}{3}\bigg)\\\qquad\text{x}=-\frac{\pi}{3}\\\qquad⇒ \text{sin}^{-1}\bigg(\frac{-\sqrt{3}}{2}\bigg)=-\frac{\pi}{3}\\\qquad\therefore \text{sin}\bigg[\frac{\pi}{2}-\bigg(-\frac{\pi}{3}\bigg)\bigg]=\text{sin}\bigg(\frac{\pi}{2}+\frac{\pi}{3}\bigg)=\text{cos} \frac{\pi}{2}=\frac{1}{2}$$

(iv) (c) Determinant is a number associated to a square matrix

$$\text{(v) (b)} \begin{pmatrix}1 & 0 \\ 0 & 1 \end{pmatrix}$$

 Explanation :

$$\text{Given,}\space \text{A}= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\\\therefore\space\space\space\space\text{A}^2= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(vi) (b) 3

 Explanation :

$$\text{Let}\space\space\space \text{A}= \begin{bmatrix} 1 & 2 \\ k & 6 \end{bmatrix}\\\qquad\therefore\space\space\space\space\text{A}^{-1}\text{does not exist if |A|}=0\\\qquad\therefore\space\space\space \begin{vmatrix} 1 & 2 \\ k & 6 \end{vmatrix}=0\\\qquad\text{⇒ 6 – 2k = 0}\\\qquad⇒ 2k = 6\\\qquad⇒ k = 3.$$

(vii) (b) 5/2

 Explanation :

$$\text{Given curve}\space\space\space \text{x}^2+3y+y^2=5\\\qquad⇒\space\space\space\text{2x+3}\frac{dy}{dx}+2y\frac{dy}{dx}=0\\\qquad\text{⇒ (3 + 2y)}\frac{dy}{dx}=-2x\\\qquad\qquad\frac{dy}{dx}=\frac{-2x}{3+2y}\\\qquad\therefore\space \text{Slope of the normal at (1, 1)} = −\frac{1}{\frac{dy}{dx}}\\\qquad\qquad =-\frac{1}{\frac{-2x}{3+2y}}=\frac{3+2y}{2x}=\frac{3 +2 ×1}{2×1}=\frac{5}{2}.$$

(viii) (c) x + y = 0

 Explanation :

$$\text{Given curve}\space\space\space \text{y = sin x}\\\qquad\therefore\frac{dy}{dx}=\text{cos x}\\\qquad⇒ \frac{dy}{dx}\bigg|_{(0,0)}=1\\\text{⇒ Slope of normal is – 1.}\\\qquad\therefore \text{Equation is,} \space y-0=-1(x-0).\\\qquad⇒\space x + y = 0.$$

(ix) (d) ab = 1

 Explanation :

$$\text{For y = ae}^{\normalsize– x},\\\qquad\frac{dy}{dx}=-ae^{-x}\\\qquad\text{and for the curve y = be}^x \space\space\frac{dy}{dx}=be^x\\\qquad\text{If curves are orthogonal then}\text{– ae}^{\normalsize– x} × be^x = – 1\\\qquad ⇒ ab = 1.$$

(x) (d) 7/8

 Explanation :

$$\text{We know,} \text{P(B|A)}=\frac{P (A \cap B)}{P(A)}\\=\frac{7/10}{4/5}=\frac{7}{8}.$$

  • (xi) Consider,

$$\text{L.H.S. = sin}^{-1}\bigg(\frac{\sqrt{3}}{2}\bigg)+2\text{tan}^{-1}\bigg(\frac{1}{\sqrt{3}}\bigg)\\\qquad\frac{\pi}{3}+2×\frac{\pi}{6}=\frac{\pi}{3}+\frac{\pi}{3}=\frac{2\pi}{3}\\\qquad=\text{R.H.S} \space\space\space\space\text{Hence Proved.}$$

$$\text{(xii) Given | A |} = 4\\\qquad\text{| – 2A | = (– 2)3.| A |}\\\qquad\text{= – 8 × 4 = – 32. \space\space \space Ans.}$$

$$\text{(xiii) We have,} \bigg(\frac{dy}{dx}\bigg)^5+\text{3xy}\bigg(\frac{d^3y}{dx^3}\bigg)+y^2\bigg(\frac{d^2y}{dx^2}\bigg)^3=0\\\qquad \therefore \text{Order = 3, degree = 2}\\\qquad \therefore\text{Sum}=3+2=5.\space\space\space\space\text{Ans}\\\text{(xiv) Here,}\space P(A)=\frac{4}{5},P(B)=\frac{1}{3}\\P(A^{‘})=\frac{1}{5},P(B^{‘})=\frac{2}{3}\\\therefore\text{The required probability} = P(A^{‘}).P(B^{‘}) =\frac{1}{5}×\frac{2}{3}=\frac{2}{15}\text{Ans.}\\\text{(xv) Multiples of 5 are 5, 10, 15 and 20}\\\text{Multiples of 7 are 7, 14}\\\text{Total favourable events = 4 + 2 = 6}\\\text{Total number of possible outcomes = 20}\\\therefore \text{Probability that the ball drawn is marked with a number multiple of 5 or 7}\\=\frac{6}{20}=\frac{3}{10}.\\$$

Answer 2.

  • (i) Here, R = {(a, b) : b = a + 1}
  • R = {(a, a + 1) : a, a + 1 ∈ (1, 2, 3, 4, 5, 6)}
  • ⇒ R = {(1,2,) (2,3), (3,4), (4,5), (5,6)}
  • (a) R is not reflexive as (a, a) ∉ R
  • (b) R is not symmetric as (1, 2) ∈ R but (2, 1) ∉ R
  • (c) R is not transitive as (1, 2) ∈ R, (2, 3) ∈ R but (1, 3) ∉ R

OR

  • (ii) Given, f(x) = x2 + 4
  • Let f(x1) = f(x2)
  • ⇒ x21 + 4 = x22 + 4
  • ⇒ x1 = x2
  • Thus, f(x) is one-one.
  • Since, x2 + 4 is a real number. Thus, for every y in the co-domain of f, there exists a number x in R+ such that f(x) = y = x2 + 4
  • Thus, we can say that f(x) is onto.
  • Now, f(x) is one-one and onto. Hence, f(x) is invertible.
  • Let f(x) = y ⇒ x2 + 4 = y
  • ⇒ x2 = y − 4
  • i.e. x = √(y − 4)
  • Also, x = f −1(y)
  • f –1(y) = √(y − 4) . Hence Proved.

Answer 3.

$$\text{To prove f is invertible we have to prove that f is one-one and onto.}\\\qquad\text{For one-one}\\\qquad\text{Let} x_1, x_2 \epsilon R_+ , then\\\qquad f (x_1) = f (x_2)\\\qquad\Rarr 5x_1^2 + 6x_1 − 9 = 5x_2^2 + 6x_2 − 9\\\qquad\Rarr 5(x_1^2 − x_2^2) + 6(x_1 − x_2) = 0\\\qquad\Rarr(x_1 − x_2)(5x_1 + 5x_2 + 6) = 0\\\qquad\Rarr x_1 − x_2 = 0\space as\space 5x_1 + 5x_2 + 6 \neq 0\\\qquad\Rarr x_1 = x_2\\\qquad\text{i.e., f is one-one function.}\\\qquad\text{For onto}\\\qquad\text{Let}\space f (x) = y\\\qquad\because y = 5x^2 + 6x − 9\\\qquad\therefore 5x^2 + 6x − (9 + y) = 0\\\qquad x=\frac{-6\pm\sqrt{36+4×5(9+y)}}{10}\\\qquad=\frac{-6\pm\sqrt{216+20y}}{10}\\\qquad\qquad=\frac{\pm\sqrt{54+5y-3}}{5}\\\qquad x=\frac{\sqrt{54+5y}-3}{5}\space\space(\because x \epsilon R_+) $$

$$\text{Clearly }\forall y\space\epsilon\space [-9,\infty],\text{the value of x} \epsilon \text{R}_+\\\Longrightarrow\text{f is onto function}\\\text{\text Hence f is one-one onto function}\\\Longrightarrow\text{f is invertiable function with }\\\text{f}^{-1}(y)=\frac{\sqrt{54+5y-3}}{5}\\\space\space\space\space \text{Hence Proved}$$

Answer 4.

$$\text{We know that}\\\qquad\text{sin}^{\normalsize–1}(\text{sin x}) = x\\\qquad\text{So}, \text{sin}^{-1}\bigg[\text{sin}\bigg(\frac{-17\pi}{8}\bigg)\bigg]=\text{sin}^{-1}\bigg[-\text{sin}\frac{17\pi}{8}\bigg]\\\qquad=\text{sin}^{-1}\bigg[-\text{sin}\bigg(2\pi+\frac{\pi}{8}\bigg)\bigg]\\\qquad=\text{sin}^{-1}\bigg(-\text{sin}\frac{\pi}{8}\bigg)\\\qquad=\text{sin}^{-1}\bigg[\text{sin}\bigg(-\frac{\pi}{8}\bigg)\bigg]\\\qquad-\frac{\pi}{8}\space\space\space\space\space\space\space\space\text{Ans.}$$

Answer 5.

$$\text{(i) Given,}\space\space\space y=\frac{e^{2x}+e^{-2x}}{e^{2x}-e^{-2x}}\\\qquad=\frac{e^{4x+1}}{e^{4x-1}}\\\qquad \text{On differentiating w.r.t. x, we get}\\\qquad \space \frac{dy}{dx}=\frac{4e^{4x}(e^{4x}-1)-4e^{4x}(e^{4x+1})}{(e^{4x-1})^2}$$

OR

$$\text{(ii) Given,} \\\qquad\text{x = a sin}^3 t\\\qquad\therefore\frac{dx}{dt}=\text{3a sin}^2 t.\text{cos}\space t\\\qquad\text{Also, y = a cos}^3 t\\\qquad\therefore\frac{dx}{dt}=\text{3a cos}^2 t (– \text{sin}\space t)\\\qquad\therefore\space\space\frac{dy}{dx}=\frac{-3a\space\text{cos}^2 t.\text{sin\space t}}{3a \space\text{sin}^2t.\text{cos}\space t} \bigg[\because \frac{dy}{dx}=\frac{dy/dt}{dx/dt}\bigg]\\\qquad\Rarr\frac{dy}{dx}=-\text{cot} \space t.$$

Answer 6.

  • Given, y = 2 cos (log x) + 3 sin (log x)
  • On differentiating both sides w.r.t. x, we get

$$\frac{dy}{dx}=-2\text\space{\text{sin}}(\text{log} \space x).\frac{1}{x}+\text{3 cos (log x)}.\frac{1}{x}\\\qquad\Rarr x\frac{dy}{dx}=-2 \text{sin}(\text{log} x) + 3 cos (\text{log} x)\\\qquad\text{Again differentiating both sides w.r.t. x, we get}\\\qquad x\frac{d^2y}{dx^2}+\frac{dy}{dx}=-2\text{cos}(\text{log} \space x).\frac{1}{x}-3 \space\text{sin}(\text{log} \space x).\frac{1}{x}\\\qquad \Rarr x^2\frac{d^2y}{dx^2}+x.\frac{dy}{dx}=-(2\space \text{cos}\space(\text{log} x)+ 3 \space\text{sin} \space (\text{log} x))\\\qquad \Rarr x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}=-y\\\Rarr x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}+y=0$$

Answer 7.

$$\text{Given function is}\\\text{f(x)}=\frac{x^4}{4}-x^3-5x^2+24x+12\\\text{f}'(x)=\frac{4x^3}{4}-3x^2- 10x+ 24\\\text{For critical points, put f}^ ′(x) = 0\\\therefore\space\space x^3 – 3x^2 – 10x + 24 = 0\\(x-2)(x^2-x-12)=0\\(x – 2) (x – 4) (x + 3) = 0\\\Rarr x = 2, 4, – 3\\\text{Therefore, we have the intervals (– ∞, – 3), (– 3, 2), (2, 4) and (4, ∞).}$$

infinitediagram

$$\text{Since f’(x) > 0 in (– 3, 2) ∪ (4, ∞).}\\\therefore\space \text{f(x) is increasing in interval (– 3, 2) ∪ (4, ∞).}\\\text{And f}^′(x) < 0 \space \text{in} (– ∞, – 3) ∪ (2, 4)\\\therefore\space \text{f(x) is decreasing in (– ∞, – 3) ∪ (2, 4).} $$

Answer 8.

$$\text{Let S be the sample space, then S} = {HH, HT, T_1, T_2, T_3, T_4, T_5, T_6}\\\qquad\text{P(HH)}=\frac{1}{2}×\frac{1}{2}=\frac{1}{4}\\\qquad\text{P(HT)\space =}\space\frac{1}{2}×\frac{1}{2}=\frac{1}{4}\\\qquad\text{Probability of each of the elementary event} \space T_1, T_2, T_3, T_4, T_5 \space\text{and}\space T_6 \space is \space \frac{1}{2}×\frac{1}{6}=\frac{1}{12}\\\qquad\text{Let A be the event of die showing a number greater than 4 and B be the event that there is at least one tail.}\\\qquad\text{A}={\text{T}_5, \text{T}_6}\\P(B)=\frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{4}\\\qquad\text{P(A ∩ B)=}\frac{1}{12}+\frac{1}{12}=\frac{1}{6}\\\qquad\text{P(A|B)}=\frac{P(A\cap B)}{P(B)}=\frac{1/6}{3/4}\\\qquad \frac{4}{6×3}=\frac{2}{9}\\\qquad \therefore \space\space\space \text{Required probability =}\frac{2}{9}.\space\space\text{Ans.} $$

Answer 9.

$$\text{(i)}\space \text{Let}\space I=\frac{1}{2}\int( 2 \text{cos 2x cos 4x})\space \text{cos 6x dx}\\\qquad I =\frac{1}{2}(\text{cos}6x + \text{cos} 2x)\text{cos6x dx}\\\qquad[\because 2 \text{cos A cos B} = \text{cos} (A + B) + \text{cos} (A – B)]\\=\frac{1}{2}\int\text{cos 6x cos 6x dx}+\frac{1}{2}\int\text{cos 2x cos6x dx}\\\qquad=\frac{1}{4}\int\text{2 cos 6x cos 6x dx}+\frac{1}{4}\int\text{2 cos 2x cos6x dx}\\\qquad=\frac{1}{4}\int(\text{cos} 12x + \text{cos} 0)dx+\frac{1}{4}\int\text{cos8x cos 4x dx}\\\qquad=\frac{1}{4}\bigg[\int(cos 12x+1+cos8x+cos 4x)dx\bigg]\\\qquad\frac{1}{4}\bigg[\frac{\text{sin} 12x}{12}+\frac{\text{sin}8x}{8}+\frac{\text{sin}4x}{4 }+x\bigg]+\text{C}$$

OR

$$\text{(ii)}\space\space\space\int\frac{\text{cos}2x-\text{cos}2\alpha}{\text{cos}x-\text{cos}\alpha}dx=\int\frac{2\text{cos}^2x-1-2\text{cos}^2\alpha+1}{\text{cos}\space x\text{cos}\space\alpha}dx\space\space\space[\because \text{cos}2\theta =2 \text{cos}^2\theta-1]\\\qquad=\int\frac{2 \text{cos}^2x-2\text{cos}^2\alpha}{\text{cos}\space x-\text{cos}\space \alpha}dx\\\qquad=\int\frac{2(\text{cos}x- \text{cos}\space\alpha)(\text{cos x + cos}\space\alpha)}{(\text{cos} x-\text{cos}\space \alpha)}dx\\\qquad=2\int(\text{cos}\space x+\text{cos}\alpha)dx\\\qquad =2\bigg[\int\text{cos x dx}+\int\text{cos}\alpha dx \bigg]\\\qquad\text{= 2 sin x + 2x cos} \alpha + \text{C} \space\space\space\space\text{Ans.}$$

Answer 10.

$$\text{(i) Given differential equation is}\\\qquad\frac{dy}{dx}=1 + x^2 + y^2 + x^2y^2\\= (1 + x^2) + y^2 (1 + x^2)\\\Rarr\frac{dy}{dx}=(1+x^2)(1+y^2)\\\qquad\Rarr\frac{dy}{1+y^2}=(1+x^2)dx\\\qquad\text{On integrating both sides, we have}\\\qquad\int\frac{dy}{1+y^2}=\int(1+x^2)dx\\\qquad\text{tan}^{-1}y=x+\frac{x^3}{3}+\text{C}\space\space\space…\text{(i)}\\\text{put y = 1 and x = 0 in equation (i),}\\\qquad\text{tan}^{-1}1=0+0+\text{c}\\\qquad\text{C}=\frac{\pi}{4}\\\text{Equation (i) becomes:}\\\text{tan}^{-1}y=x+\frac{x^3}{3}+\frac{\pi}{4}\\\qquad\Rarr y= \text{tan}\bigg(x+\frac{x^3}{3}+\frac{\pi}{4}\bigg)\\\qquad\text{is the required particular solution of given equation.}\\\qquad\text{OR}\\\qquad\text{The given differential equation is}\\\qquad(1-y^2)(1+log\space x)dx+2xy dy = 0\\\qquad\frac{(1+log x)}{x}dx=\frac{-2y}{(1-y^2)}dy\\\qquad\text{On integrating both sides, we have}\\\qquad\int\frac{1+\text{log}x}{x}dx=\int\frac{2y}{(1-y)^2}dy\\\qquad\text{In first integral,}\\\qquad\text{put}\space\space\space\space\text{1 + log x = t}\\\qquad\Rarr\frac{1}{x}dx=dt\\\qquad\text{Also in second integral,}\\\qquad\text{put}\space\space\space\text{1 – y}^2 = u\\\qquad\Rarr\space\space\space\space\text{– 2y dy = du}\\\qquad\therefore\int t.dt=\int\frac{1}{u}du\\\qquad\Rarr\frac{t^2}{2}-\text{log}|u|=\text{C}\\\qquad\text{or}\space \frac{1}{2}(1+\text{log} x)^2-\text{log}|1-y^2|=\text{C}\text{It is given that y = 0 when x = 1}\\\qquad\text{So},\space\space\space\frac{1}{2}(1+\text{log} 1)^2-\text{log}|1-0^2|=\text{C}\\\qquad\text{C}=\frac{1}{2}\\\qquad\therefore\space\space\space\frac{(1+\text{log}x)^2}{2}-\text{log}|1-0^2|=\text{C}\\\Rarr\text{C}=\frac{1}{2}\\\qquad\therefore\frac{(1+\text{log}\space x)^2}{2}-\text{log}|1-y^2|=\frac{1}{2}\\\qquad\text{or}\space\space\space\space(1+\text{log}x)^2-2\space \text{log}|1-y^2|=1\\\qquad\text{It is the required particular solution.}$$

Answer 11.

$$\text{The given system of equations can be written in matrix form as :}\\\qquad\space \begin{bmatrix} 2 & -3 & 5 \\3 & 2 & -4\\1 & 1 & -2 \end{bmatrix}\begin{bmatrix} x \\y \\z \end{bmatrix}=\begin{bmatrix} 11 \\-5 \\-3 \end{bmatrix}\\\qquad\Rarr \text{AX}=\text{B}\space\space\space\text{…(i)}\\\qquad\text{where}\space \text{A}=\begin{bmatrix} 2 & -3 & 5 \\3 & 2 & -4\\1 & 1 & -2 \end{bmatrix},\text{X}=\begin{bmatrix} x \\y \\z \end{bmatrix},\text{B}=\begin{bmatrix} 11 \\-5 \\-3 \end{bmatrix}\\\qquad\text{Here}, | A| = 2(– 4 + 4) + 3(– 6 + 4) + 5(3 – 2) = – 1 \neq 0\\\qquad\therefore\text{A}^{-1}\text{exists}\\\qquad $$

$$ \begin{bmatrix*}[r]\begin{vmatrix*}[r]2 & -4 \\1 & -2\end{vmatrix*} & -\begin{vmatrix*}[r]-3 & 5 \\1 & -2\end{vmatrix*} &\begin{vmatrix*}[r]-3 & 5 \\2 & -4\end{vmatrix*} \\\cr-\begin{vmatrix*}[r]3 & -4 \\1 & -2\end{vmatrix*} & \begin{vmatrix*}[r]2 & 5 \\1 & -2\end{vmatrix*} & -\begin{vmatrix*}[r]2 & 5 \\3 & 4\end{vmatrix*}\\\cr\begin{vmatrix*}[r]3 & 2 \\1 & 1\end{vmatrix*} & -\begin{vmatrix*}[r]2 & -3 \\1 & 1\end{vmatrix*} & \begin{vmatrix*}[r]2 & -3 \\3 & 2\end{vmatrix*}\end{bmatrix*}$$

$$=\begin{bmatrix*}[r]-\begin{vmatrix*}[r]0 & -1 & 2 \\2 & -9 & 23\\1 & -5 & 13\end{vmatrix*} \\\end{bmatrix*}$$

$$\therefore \space\space\text{A}^{-1}=\frac{\text{adj (A)}}{|\text{A}|}=\frac{1}{-1}\begin{bmatrix*}[r]0 & -1 & 2 \\2 & -9 & 23\\1 & -5 & 13\\\end{bmatrix*}=\begin{bmatrix*}[r]0 & -1 & 2 \\2 & -9 & 23\\1 & -5 & 13\end{bmatrix*}\\\qquad\therefore\space\space\text{From (i),}\space\space \text{X}=\text{A}^{-1}\text{B}\\\qquad\Rarr\begin{bmatrix*}[r]x \\y \\z \\\end{bmatrix*}=\begin{bmatrix*}[r]0 &1 &-2 \\-2 &9 &-23\\-1 &5 &-13 \\\end{bmatrix*}\begin{bmatrix*}[r]11 \\-5 \\-3 \\\end{bmatrix*}\\\therefore\space\space\space\space x = 1, y = 2, z = 3.\space\space\space\space\text{Ans}.$$

Answer 12.

$$\text{(i) Let} e^{x^{3}}= t\\\qquad\therefore 3x^2 e^{x^{3}} dx= dt\\\qquad\therefore\int x^2(e^{x^3})\text{cos}(2e^{x^3})dx=\int\frac{1}{3}\text{cos 2t dt}\\\qquad=\frac{1}{3}.\frac{1}{2}\text{sin\space 2t+C}\\\qquad=\frac{1}{6}\text{sin}(2e^{x^3})+\text{C}\space\space\text{Ans.}$$

OR

$$\text{(ii)}\int{x(\text{tan}^{-1}x)^2}dx\\\qquad\text{Let tan}^{-1}x=t\Rarr \text{x\space=\space tan\space t}\\\qquad\text{dx= sec}^2 t \space dt\\\qquad\int x(\text{tan}^{-1}x)^{2}dx=\int\text{t}^{2}.\text{tan}\space t \text{sec}^2t \space dt\text\space {[\text{Integrating\space by parts]}}\\\qquad=\text{t}^2.\frac{\text{tan}^2 t}{2}-\int\frac{2t\space \text{tan}^2t}{2}dt\\\qquad=\frac{1}{2}t^2\space \text{tan}^2t-\int\text{t}(\text{sec}^2 t-1)dt\\\qquad\space=\frac{1}{2}\space\text{t}^2\space\text{tan}^2t-\int\text{t sec}^2 t \space dt+\int t\space dt\\\qquad=\frac{1}{2}\text{t}^2\text{tan}^2t+\frac{t^2}{2}-\int\text{t sec}^2 t dt\\\qquad=\frac{1}{2}\text{t}^2(\text{tan}^2t+1)- \lbrace\text{t tant -}\int{\text{tan t dt}}\rbrace\\\qquad=\frac{1}{2}t^2(\text{tan}^2 t +1)-\text{t tan t + log|\text{sec t}|+\text{C}}\\\qquad=\frac{1}{2}(1+x^2)(\text{tan}^{-1} x)^2-\text{x tan}^{-1}x+\text{log}(\sqrt{1+x^2})+\text{C}\\\qquad=\frac{1}{2}(1+x^2)(\text{tan}^{-1}x)^2-x\space \text{tan}^{-1} x+\frac{1}{2}\text{log}(\sqrt{1+x^2})+\text{C}.\space \text{Ans}$$

Answer 13.

$$\text{(i) Given,} \space (1+x^2)\frac{dy}{dx}=(e^{m\space\text{tan}^{-1}x}-y)\\\qquad\frac{dy}{dx}=\frac{e^{mtan^{-1}x}}{1+x^2}-\frac{y}{1+x^2}\\\qquad\Rarr\frac{dy}{dx}+\frac{1}{1+x^2}y=\frac{e^{m tan^{-1}}x}{1+x^2}\\\qquad\text{This equation is of the form}\\\qquad\frac{dy}{dx}+Py=Q(x)\\\qquad\text{Where \space P\space=}\space\frac{1}{1+x^2}\text{and }\space \text{Q(x)}=\frac{e^{mtan^{-1}x}}{1+x^2}\\\qquad\text{I.F.}=_e\int Pdx=\int e^{\bigg(\frac{1}{1+x^2}\bigg)dx}=\text{e}^{\text{tan}^{-1}x}\\\qquad\text{Hence, solution of linear differential equation is given by}\\\qquad \text{y × I.F.=}\int \text{I.F×Q(x)dx}\\\qquad\Rarr\text{y × e}^{\text{tan}^{-1}}x.\frac{e^{mtan^{-1}x}}{1+x^2}dx\\\qquad\Rarr\text{y× e}^{\text{tan}^{-1}x}=\int\frac{e^{(1+m)\text{tan}^{-1}x}}{1+x^2}dx\\\qquad\text{Let}\space\space e^{(1+m)}\text{tan}^{-1}x=t\\\qquad\Rarr(1+m)\frac{e^{(1+m)tan^{-1}x}}{1+x^2}dx=dt\\\qquad\therefore\space \text{y× e}^{\text{tan}^{-1}x}=\int\frac{1}{1+m}dt\\\qquad\Rarr\text{y × e}^{\text{tan}^{-1}x}=\frac{1}{(1+m)}t+\text{C}\\\qquad=\frac{1}{1+m}e^{(1+m)\text{tan}^{-1}x}+\text{C}\\\qquad\Rarr\text{y× e}^{tan^{-1}0}=\int\frac{e^0}{1+x^2}dx=\int\frac{dx}{1+x^2}\\\qquad\Rarr y× e^{tan^{-1}}x=\text{tan}^{-1}x+\text{C}\\\qquad\text{When x = 0, then y = 1,}\\\qquad\therefore\space \text{1×e}^{\text{tan}^{-1}0}=\text{tan}^{-1}0+\text{C}\\\qquad\Rarr 1 × e^{0} = 0 + \text{C}\\\qquad\Rarr \text{C}=1\\\text{Hence, particular solution of differential equation is}\\\qquad\text{y × e}^{\text{tan}^{-1}x}=\tan^{-1}x + 1. \space \text{Ans}.$$

$$\Rarr\text{y× e}^{tan^{-1}0}=\int\frac{e^0}{1+x^2}dx=\int\frac{dx}{1+x^2}\\\qquad\Rarr y× e^{tan^{-1}}x=\text{tan}^{-1}x+\text{C}\\\qquad\text{When x = 0, then y = 1,}\\\qquad\therefore\space \text{1×e}^{\text{tan}^{-1}0}=\text{tan}^{-1}0+\text{C}\\\qquad\Rarr 1 × e^{0} = 0 + \text{C}\\\qquad\Rarr \text{C}=1\\\text{Hence, particular solution of differential equation is}\\\qquad\text{y × e}^{\text{tan}^{-1}x}=\tan^{-1}x + 1. \space \text{Ans}.$$

OR

answer13(ii)

$$\text{(ii) Let ABC be an isosceles triangle with AB = AC and a circle of radius r unit with centre I is inscribed in} \space \Delta \text{ABC}.\\\qquad\text{Now,}\space \text{AD}\perp \text{BC}\\\qquad\therefore \text{BD\space=\space DC}\\\qquad\text{Let AE = AF = x units, [Tangents drawn from an external point]}\\\qquad\text{CE = CD = BD = y units}\\\qquad\therefore\text{BD = BF = y units}\\\qquad\text{Perimeter of triangle = AB + BC + AC}\\\qquad\text{= x + y + 2y + x + y}\\\qquad\text{P = 2x + 4y …(i)}\\\qquad\text{In} \space\Delta\text{AIE},\space \angle\text{AEI}=90\degree\\\qquad\therefore\frac{\text{AE}}{\text{IE}}=\text{cot}\space\theta\\\qquad\text{AE = r cot θ = x …(ii)}\\\qquad\text{In} \Delta \text{ADC}, ∠\text{ADC} = 90°\\\qquad\therefore\frac{\text{DC}}{\text{AC}}=\text{sin}\space\theta\\\qquad\qquad\frac{y}{x+y}=\text{sin}\space\theta\\\qquad\Rarr \text{x sin} \theta + \text{y sin} \theta =\text{y}\\\qquad\Rarr\text{r cot} \theta \text{sin}\space \theta = y(1 – sin \theta) \space\space\space[\text{Using (ii)}]\\\qquad\Rarr\frac{\text{rcos}\space\theta}{1-\text{sin}\space\theta}=y\space\space\space\space\space\text{…(iii)}\\\qquad\text{From equations (i), (ii) and (iii),}\\\qquad\text{P=2x+4y}\\\qquad\text{P=2r\text{cot}}\space \theta+\frac{4r\text{cos}\space\theta}{1-\text{sin}\space\theta}\\\qquad\therefore\frac{dP}{d\theta}=\frac{d}{d\theta}\text{2r cot}\space \theta+\frac{d}{d\theta}\frac{4r\text{cos}\space\theta}{1-\text{sin}\space \theta}\\\qquad=-\text{2r cosec}^2\theta+4r\bigg[\frac{(1-\text{sin}\space\theta)(-\text{sin}\space\theta)-\text{cos}\space \theta(-\text{cos}\theta)}{(1-\text{sin}\theta)^2}\bigg]\\\qquad\text{=\space -2r\space\text{cosec}}^2\theta+4r\bigg[\frac{-\text{sin}\space\theta+\text{sin}^2\theta+\text{cos}^2\theta}{(1-\text{sin}\space\theta)^2}\bigg]\\\qquad=-\text{2r cosec}^2\theta+4r\bigg[\frac{1-\text{sin}\theta}{(1-\text{sin}\theta)^2}\bigg]\\\qquad=-\text{2r cosec}^2\theta+4r\bigg[\frac{1-\text{sin}\space\theta}{(1-\text{sin\space}\theta)^2}\bigg]\\\qquad=\text{-2r\space\text{cosec}}^2\theta+\frac{4r}{1-\text{sin}\space\theta}\\\qquad=2r\bigg[\frac{-1}{\text{sin}^2\theta}+\frac{2}{1-\text{sin}\space\theta}\bigg]\\\qquad=2r\bigg[\frac{-1+\text{sin} \space\theta+2\text{sin}^{2}\space\theta}{\text{sin}^{2}\theta(1-\text{sin}\space\theta)}\bigg]\\\qquad\therefore\frac{dP}{d\theta}=\frac{2r(2 \text{sin}\theta-1)(\text{sin}\theta+1)}{\text{sin}^2\theta(1-\text{sin}\theta)}\\\qquad\text{For maxima and minima,}\\\qquad\text{Put},\frac{dP}{d\theta}=0\\\qquad\therefore \frac{2r(2 \text{sin}\space\theta-1)(\text{sin}\space\theta+1)}{\text{sin}^2\theta(1-\text{sin}\space\theta)}=0\\\qquad\text{2r}(2 \text{sin}\space\theta-1)(\text{sin}\space\theta+1)=0\\\qquad\because r\neq0 \\\qquad\therefore\space\space \text{2 sin}\space\theta-1=0\\\qquad\Rarr\text{sin}\space\theta=\frac{1}{2}\\\qquad\\\qquad \theta=30\degree \text{or}\frac{\pi}{6},\\\qquad \Biggm\vert\text{or sin}\space \theta + 1 = 0\\\qquad\Rarr\text{sin}\space \theta = – 1\\\qquad\Rarr\theta=-\frac{\pi}{2}\\\qquad\qquad\because\theta=-\frac{\pi}{2}\text{=is not possible}\\\qquad\therefore\theta=30\degree\text{or}\space\frac{\pi}{6}\\\qquad\text{Now},\space\space\space\frac{d^2P}{d\theta^{2}}=\frac{d}{d\theta}\bigg[-2r\space\text{cosec}^2\theta+\frac{4r}{1-\text{sin}\space\theta}\bigg]\\\qquad=-\text{2r}(2\text{cosec}\space \theta)(-\text{cosec}\theta\space \text{cot}\theta)-4r.\frac{1}{(1-\text{sin}\theta)^2}(-\text{cos}\theta)\\\qquad=4r\bigg[\text{cosec}^2\theta\text{cot}\theta+\frac{\text{cos}\space\theta}{(1-\text{sin}\theta)^2}\bigg]\\\qquad =\text{4r}\bigg[\text{cosec}^2\frac{\pi}{6}\text{cot}\frac{\pi}{6}+\frac{\text{cos}\frac{\pi}{6}}{\bigg(1-\text{sin}\frac{\pi}{6}\bigg)^2}\bigg]\\\qquad=\text{4r}(4. \sqrt{3} + 2 \sqrt{3})\\\qquad\therefore\bigg(\frac{d^2P}{d\theta^2}\bigg)_{\theta=\pi/6}\text{\textgreater}\text\space0\\\qquad\text{Hence, perimeter is minimum at π/6.}\\\qquad\text{Now, Perimeter of} \Delta ABC = 2x + 4y\\\qquad= 2r\text{cot}\theta+\frac{4r\text{cos}\space\theta}{1-\text{sin}\space\theta}\\\qquad=\text{2r\text{cot}}\frac{\pi}{6}+\frac{4r\text{cos}\frac{\pi}{6}}{1-\text{sin}\frac{\pi}{6}}\\\qquad=2r.\sqrt{3}+\frac{4r.\frac{\sqrt{3}}{2}}{1-\frac{1}{2}}\\\qquad =r(2\sqrt{3}+4\sqrt{3})\\\qquad\therefore\text{Least perimeter of} \Delta\text{ABC is}\space 6\sqrt{3r}\space \text{units}.\space\space\space\text{Hence Proved.}$$

Answer 14.

$$\text{According to question,}\\\qquad\text{P(H) = 3P(T)}\\\qquad\text{But}\space\space\space\text{P(H) + P(T) = 1}\\\qquad\Rarr\text{3P(T) + P(T) = 1}\\\qquad\Rarr\text{4P(T) = 1}\\\qquad\Rarr P(T)=\frac{1}{4}\\\qquad\text{So},\space\space\space \text{P(H)}=\frac{3}{4}\\\qquad\qquad\text{Let X denotes number of tails obtained when the coin is tossed twice. Then, X can be 0, 1or 2.}\\\qquad\text{P(X = 0) = P(HH)}\\\qquad=\bigg(\frac{3}{4}\bigg)^2=\frac{9}{16}\\\qquad\text{P(X = 1) = P(HT or TH)}\\\qquad=\frac{3}{4}×\frac{1}{4}+\frac{1}{4}×\frac{3}{4}\\\qquad =\frac{6}{16}\\\qquad \text{P(X=2)}=\text{P(TT)}\\\qquad=\frac{1}{4}×\frac{1}{4}=\frac{1}{16}\\\qquad\therefore\text{Probability distribution table is}\\\qquad \text{Now, Mean}\space\space\space\space=\text{E(X)}=\displaystyle\sum_{i=1}^n\space X_iP(X_i)\\\qquad=0×\frac{9}{16}+1×\frac{6}{16}+2×\frac{1}{16}\\\qquad\qquad=\frac{8}{16}=\frac{1}{2}\\\qquad\therefore\text{Mean}=\frac{1}{2}$$

Xi 0 1 2
P(Xi) $$\frac{9}{16}$$ $$\frac{6}{16}$$ $$\frac{1}{16}$$

$$\text{Now, Mean}\space\space\space\space=\text{E(X)}=\displaystyle\sum_{i=1}^n\space X_iP(X_i)\\\qquad=0×\frac{9}{16}+1×\frac{6}{16}+2×\frac{1}{16}\\\qquad\qquad\qquad\qquad=\frac{8}{16}=\frac{1}{2}\\\qquad\therefore\text{Mean}=\frac{1}{2}$$

Section-B

Answer 15.

$$\text{(i)}\space [a-b,b-c,c-a]=[(a-b)×(b-c)].(c-a)\\\qquad=[a×b-a×c-b×b+b×c].(c-a)\\\qquad=[a×b-a×c+b×c].(c-a)\\\qquad=(a×b).c-(a×c).c+(b×c).c-(a×b).a-(a×c).a-(b×c).a\\\qquad\text{= (a × b).c – (b × c)a}\\\qquad\text{= (a × b).c – (a × b).c}\text{= 0.} \space\space \text{Ans. (a)}$$

$$\text{(ii)}\space \text{Angle between two planes}\space a_1 x + b_1 y + c_1 = 0 \space\text{and}\space a_2x + b_2y + c_2 = 0 \text{is given by},\\\qquad\text{cos}\space \theta=\bigg|\frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}\bigg|\\\qquad\text{Here}\space a_1 = 2, b_1 = – 1, c_1 = 1\\\qquad\text{and}\space\space\space a_2 = 1, b_2 = 1, c_2 = 2\\\qquad\therefore\space\space\text{cos}\space \theta=\bigg|\frac{2(1)+(-1)(1)+(1)(2)}{\sqrt{2^2+1^2+1^2}\sqrt{1^2+1^2+2^2}}\bigg|\\\qquad \text{cos}\space \theta=\bigg|\frac{2-1+2}{\sqrt{6}\sqrt{6}}\bigg|=\frac{1}{2}\\\qquad\qquad\therefore\space \theta=60\degree=\frac{\pi}{3}\space\space\text{Ans. (b)}$$

$$\text{(iii) For}\space \bigg(\frac{1}{\sqrt{2},}\frac{1}{2},k\bigg)\text{to represent direction cosines, we should have}\\\qquad\bigg(\frac{1}{\sqrt{2}}\bigg)^2+\bigg(\frac{1}{2}\bigg)^2+k^2=1\\\qquad\qquad\text{or}\space\frac{1}{2}+\frac{1}{4}+k^2=1\\\qquad\Rarr\space k=\pm\frac{1}{2}.$$

$$\text{(iv)}\space\space\vec{a}=2\hat{i}-\hat{j}+\hat{k},\space\vec{b}=\hat{i}+2\hat{j}-3\hat{k}\space \text{and}\space\vec{c}=3\hat{i}+x\hat{j}+5\hat{k}\\\qquad\text{If}\space\space\vec{a},\space\vec{b}\space\text{and}\space\vec{c}\space\text{are coplanar, then}\\\qquad\begin{vmatrix}2 & -1 & 1 \\1 & 2 &-3\\ 3 & x & 5\end{vmatrix}=0\\\qquad\Rarr\space\space2 \begin{vmatrix} 2 & -3 \\ x & 5 \end{vmatrix}+1\begin{vmatrix} 1 & -3 \\ 3 & 5 \end{vmatrix}+\begin{vmatrix} 1 & 2 \\ 3 & x \end{vmatrix}=0\\\qquad\Rarr2(10+3x)+(5+9)+(x-6)=0\\\qquad\Rarr\space 20 + 6x + 14 + x – 6 = 0\\\qquad\space\Rarr\text{7x=28}\\\qquad\therefore\text{x = 4.}\space\space\space\text{Ans.}$$

$$\text{(v) Given : Distance of the plane from origin is 5 units and normal vector is}\space 2\hat{i}-3\hat{j}+6\hat{k}.\\\qquad\text{Equation of the plane is}\space \vec{r}.\hat{n}=d\\\qquad\text{where},\vec{n}=2\hat{i}-3\hat{j}+6\hat{k}\\\qquad|\vec{n}|=|\sqrt{2^2+(-3)^2+6^2}|=|\sqrt{4+9+36}|=7\\\qquad\therefore\space\space\space{\hat n}=\frac{\vec{n}}{|\vec{n}|}=\frac{2\hat{i}-3\hat{j}+6\hat{k}}{7}\\\qquad\therefore\space\space\space\vec{r}.\hat{n}=d\\\qquad\Rarr\vec{r}.\bigg(\frac{2\hat{i}-3\hat{j}+6\hat{k}}{7}\bigg)=5\\\qquad\therefore\space\space\space\vec{r}.(2\hat{i}-3\hat{j}+6\hat{k})=35\\\qquad\text{Hence, required equation of the plane}\space\vec{r}.(2\hat{i}-3\hat{j}+6\hat{k})=35.\space\space\text{Ans}$$

Answer 16.

$$\text{(i) The given lines are}\space\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}\space\text{and}\space\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}\\\qquad\text{Direction ratios of the given lines are (– 3, 2, 1) and (1, – 3, 2) and these are not proportional.}\\\qquad\therefore\text{Given lines are not parallel.}\\\qquad\text{Hence, these lines are intersecting.}\space\space\textbf{Hence Proved.}\\\qquad\text{If lines are coplanar then}\\\qquad\begin{vmatrix}x_2-x_1 &y_2-y_1 &z_2-z_1\\a_1 & b_1 &c_1\\a_2 & b_2 &c_2\end{vmatrix}=0\\\qquad\qquad\begin{vmatrix}0-(-1) &7-3 &-7-(-2)\\-3 & 2 &1\\1 & -3&2\end{vmatrix}=0\\\qquad \begin{vmatrix}1 &4 &-5\\-3 & 2 &1\\1 & -3 &2\end{vmatrix}=0\\\qquad \Rarr1 \begin{vmatrix}2 & 1 \\-3 & 2\end{vmatrix}-4\begin{vmatrix}2 & 1 \\-3 & 2\end{vmatrix}+(-5)\begin{vmatrix}-3 & 2 \\1 & -3\end{vmatrix}=0\\\qquad\Rarr\space (4+3)-4(-6-1)-5(9-2)=0\\\qquad\Rarr 7+28-35=0\\\qquad\text{Hence, the given lines are coplanar.}\space \textbf{Hence Proved.}\\\text{Equation of the plane containing these lines is}\\ \begin{vmatrix}x-x_1 & y-y_1 & z-z_1 \\x_2-x_1 & y_2-y_1 & z_2-z_1\\a_1&b_1 &c_1 \end{vmatrix}=0\\\qquad \begin{vmatrix}x-(-1) & y-3 & z-(-2) \\0-(-1) & 7-3 & -7-(-2)\\-3 &2 &1 \end{vmatrix}=0\\\qquad\qquad \begin{vmatrix}x+1 & y-3 & z+2 \\1 & 4 & -5\\-3 &2 &1 \end{vmatrix}=0\\\qquad \Rarr\space(x+1)\begin{vmatrix}4 & -5\\2 & 1\end{vmatrix}-(y-3)\begin{vmatrix}1 & -5\\-3 & 2\end{vmatrix}+(z+2)\begin{vmatrix}1 & 4\\-3 & 2\end{vmatrix}=0\\\Rarr(x+1)(4+10)-(y-3)(1-15)+(z+2)(2+12)=0\\\qquad\Rarr 14(x+1)-(-14)(y-3)+14(z+2)=0\\\Rarr14x + 14 + 14y – 42 + 14z + 28 = 0\\\Rarr 14x + 14y + 14z = 0 \\\Rarr x + y + z = 0\\\text{Hence, equation of the plane is x + y + z = 0.} \space \textbf{Ans.}$$

OR

$$\text{(ii) Given line is}\\\qquad 5x – 25 = 14 – 7y = 35z\\\Rarr 5(x – 5) = – 7(y – 2) = 35z\\\Rarr\space \frac{x-5}{1/5}=\frac{y-2}{-1/7}=\frac{z-0}{1/35}\\\Rarr\space \frac{x-5}{7}=\frac{y-2}{-5}=\frac{z-0}{1}\\\text{Direction ratios of this line are 7, – 5, 1.}\\\therefore\text{Vector equation of the line which passes through the point A(1, 2, – 1) and whose direction ratios are proportional to 7, – 5, 1 is}\\\qquad\vec{r}=\hat{i}+2\hat{j}-\hat{k}+\lambda(7\hat{i}-5\hat{j}+\hat{k}).$$

Answer 17.

$$\text{(i)\space Given : Coordinates of vertices of DABC are A(1, 2, 3), B (2, – 1, 4) and C(4, 5, – 1)}\\\qquad\therefore\space\space\overrightarrow{\text{AB}}=\hat{i}-3\hat{j}+\hat{k}\\\qquad\text{and}\space\overrightarrow{\text{AC}}=3\hat{i}+3\hat{j}+4\hat{k}\\\qquad\text{We know that,}\\\qquad\text{ar}(\Delta\text{ABC})=\frac{1}{2}\bigg|\overrightarrow {\text{AB}}×\overrightarrow {\text{AC}}\bigg|\\\qquad\text{Now},\overrightarrow{\text{AB}}×\overrightarrow{\text{AC}}=\begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\1 & -3 & 1\\3 & 3 & -4\end{vmatrix}\\\qquad=\vec{i}(12-3)-\vec{j}(-4-3)+\vec{k}(3+9)\\\qquad=9\vec{i}+7\vec{j}+12\vec{k}\\\qquad\therefore\space\space|\overrightarrow{\text{AB}}×\overrightarrow{\text{AC}}|=\sqrt{9^2+7^2+(12)^2}=\sqrt{274}\\\qquad\text{So},\space\space\text{ar}(\Delta\text{ABC})=\frac{1}{2}\sqrt{274}\space\text{sq}.\text{units}$$

OR

$$\text{(ii) Here,}\space\vec{a}=\hat{i}+\hat{j}+\hat{k},\hat{n}\space \text{is unit vector}\\\qquad\vec{b}=2\hat{i}+4\hat{j}-5\hat{k}\\\qquad\vec{c}=\lambda\hat{i}+2\hat{j}+3\hat{k}\\\qquad\vec{b}+\vec{c}=(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}\\\qquad\text{Then},\hat{n}=\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^2+36+4}}\\\qquad\text{Given,}\space\space\space\vec{a}.\hat{n}=1\\\qquad\bigg(\hat{i}+\hat{j}+\hat{K}\bigg).\bigg(\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^2+40}}\bigg)=1\\\qquad\Rarr(2+\lambda)+6-2=\sqrt{(2+\lambda)^2+40}\space\space\bigg[\because\space\hat{i}.\hat{i}=1,\hat{j}.\hat{j}=1,\hat{k}.\hat{k}=1\bigg]\\\qquad\Rarr(2+\lambda)+4=\sqrt{(2+\lambda)^2+40}\\\qquad\Rarr\lambda+6=\sqrt{(2+\lambda)^2+40}$$

$$\text{On squaring both sides, we get}\\\qquad(6+\lambda)^2=(2+\lambda)^2+40\\\qquad\Rarr 36 + \lambda^2 + 12\lambda = 4 + \lambda^2 + 4\lambda + 40\\\qquad\Rarr 36 + 12\lambda − 4 − 4\lambda − 40 = 0\\\qquad\Rarr8\lambda-8=0\\\qquad\Rarr\lambda=1\\\qquad\text{Then}, \vec{b}+\vec{c}=(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}\\\qquad=3\hat{i}+6\hat{j}-2\hat{k}\\\qquad\text{unit vector along}\bigg(\vec{b}+\vec{c}\bigg)=\frac{3\hat{i}+6\hat{j}+2\hat{k}}{\sqrt{9+36+4}}\\\qquad=\frac{3\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{49}}\\\qquad=\frac{3\hat{i}+6\hat{j}-2\hat{k}}{7}$$

Answer 18.

answer18

$$\text{(i) Given,}\\\qquad \lbrace(x,y):0\le y \le x^2,0 \le y \le x,0\le x \le 2\rbrace\\\qquad\Rarr y\le x^2…(i)\\\qquad y\le x\space…(ii)\\\qquad x \le 2 \space …(iii)\\\qquad x\ge 0\space…(iv)\\\qquad y\ge 0\space…(v)\\\qquad\text{Considering inequalities as equation :}\\\qquad\text{y} = x^2, y = x, x = 2, x = 0, y = 0 \\\qquad\text{Solving\space y=x}^2\text{and}\space y=x\\\qquad\Rarr x^2=x\\\qquad\Rarr x(x-1)=0 \\\qquad\Rarr x=0, x=1 \\\qquad\therefore y=0,y=1\\\qquad\therefore\text{Points of intersection of curve (i) and the (ii) are (0, 0) and (1, 1)}\\\qquad\text{Required area}=\int^1_0\text{(y of the parabola) dx}+\int^2_1\text{(y of the line)dx}\\\qquad\text{Required area}=\int^1_0 x^2dx + \int^2_1 x dx\\\qquad=\bigg[\frac{x^3}{3}\bigg]^1_0+\bigg[\frac{x^2}{2}\bigg]^2_1\\\qquad =\bigg(\frac{1}{3}-0\bigg)+\bigg(\frac{4}{2}-\frac{1}{2}\bigg)\\\qquad=\frac{1}{3}+\bigg(2-\frac{1}{2}\bigg)\\\qquad=\frac{1}{3}+\frac{3}{2}=\frac{2+9}{6}\\\qquad\qquad=\frac{11}{6}\text{square units.}$$

Section-B

Answer 19.

$$\text{(i) C(x)} = 0·005x^3 – 0·02x^2 + 30x + 5000\\\qquad\text{M.C.}=\frac{d}{dx} \lbrace\text{C}(x)\rbrace=\frac{d}{dx}(0·005x^3 − 0.02x^2 + 30x + 5000)\\\qquad = 0·015x^2 – 0·04x + 30 + 0 \\\qquad\text{M.C.} =0·015x^2 – 0·04x + 30\\\qquad\text{(M.C.)}_{x=3}=0·015(3)^2 – 0·04(3) + 30\\\qquad = 0·135 – 0·120 + 30 \\\qquad = 30·015 \\\qquad\therefore\text{(M.C.)}_{x=3}= ₹30·015. \space\space\textbf{Ans. (b)}$$

$$\text{(ii) R(x)} = 3x^2 + 36x + 5\\\qquad \text{M.R.}=\frac{d}{dx}(\text{M.R.})=\frac{d}{dx}(3x^2 + 36x + 5)\\\qquad\text{M.R.} = 6x + 36 \\\qquad \text{MR at}\space x=5,\space\space\space\space\text{M.R.} = 6(5) + 36 = ₹ 66. \space\space\textbf{Ans. (d)}$$

$$\text{(iii) C(x)} = 0·007x^3 – 0·003×2 + 15x + 4000\\\qquad\text{M.C.}=\frac{d}{dx}\lbrace \text{C(x)}\rbrace=\frac{d}{dx}(0·007x^3 − 0·003x^2 + 15x + 4000)\\\qquad\text{M.C.} = 0·021x^2 – 0·006x + 15 + 0 \\\text{MC at x = 17}\space\space\space\space\text{M.C.}=0·021(17)^2 – 0·006(17) + 15\\\qquad\text{M.C.}=0·021(289) – 0·006(17) + 15\\\qquad\text{M.C.}=6·069 – 0·102 + 15\\\qquad\text{M.C.}=₹20·967.$$

$$\text{(iv) (c) Regresion}\\\qquad\text{(v) Given, X = 0.85Y and Y = 0.89X}\\\qquad\therefore\space b_{xy}=0.85 \space\text{and} \space Y=0.89X\\\qquad\therefore\space b_{xy}=0.85\space\text{and}\space b_{yx}=0.89\\\qquad\text{Coefficient of correlation is given as,}\\\qquad r=\pm\sqrt{b_{xy}×b_{yx}}\\\qquad=\pm\sqrt{0.85×0.89}\\\qquad=\pm\sqrt{0 7565}\\\qquad=\pm0.87\\\qquad \because\space b_{xy},b_{yx} \text{\textgreater}\space 0\\\qquad\therefore r=0.87\space \textbf{Ans.}$$

Answer 20.

$$\text{(i) Given, Cost price of x items =}\space₹\bigg(\frac{x}{5}+500\bigg)\\\qquad\text{Selling price of x items =}\space ₹\bigg(5-\frac{x}{100}\bigg)x\\\qquad=₹\bigg(5x-\frac{x^2}{100}\bigg)\\\qquad\therefore \text{Profit = S.P. – C.P.}\\\qquad=₹\bigg(5x-\frac{x^2}{100}-\frac{x}{5}-500\bigg)\\\qquad \text{P(x)}=\frac{24x}{5}-\frac{x}{50}-500\\\text{Differentiating w.r.t. x, we get}\\\qquad\frac{dP}{dx}=\frac{d}{dx}\bigg(\frac{24x}{5}\bigg)-\frac{d}{dx}\bigg(\frac{x^2}{100}\bigg)-\frac{d}{dx}(500)\\\qquad\frac{dP}{dx}=\frac{24}{5}-\frac{x}{50}-0\\\qquad\text{For P to be maximum,}\\\qquad\frac{dP}{dx}=0\\\qquad\qquad\qquad\qquad\therefore\frac{24}{5}-\frac{x}{50}=0\\\qquad\Rarr\frac{x}{50}=\frac{24}{5}\\\qquad\Rarr x=\frac{24×50}{5}=240\\\qquad\Rarr\frac{d^2P}{dx^2}=\frac{d}{dx}\bigg(\frac{24}{5}\bigg)-\frac{d}{dx}\bigg(\frac{x}{50}\bigg)\\\qquad\Rarr\frac{d^2P}{dx^2}\text{\textless}\space0\\\therefore\text{Profit is maximum when 240 items are sold.}\\\qquad\text{Maximum profit at x = 240,} \textbf{Ans.}\\\qquad\text{P(240) =}\frac{24}{5}×240 – \frac{240×240}{100}-500\\\qquad\qquad= 24 × 48 – 576 – 500\\\qquad = 1152 – 1076\\\qquad=₹76\\\qquad\text{Hence, maximum profit is ₹ 76.}\space \textbf{Ans}.$$

OR

$$\text{(ii)}\space\text{Let the annual subscription be increaesed by ₹ x.}\\\qquad\therefore\text{Charges per subscriber\space= ₹(300+x)}\\\qquad\text{and}\space\text{Number of subscribers\space = (500-x)}\\\qquad\text{Annual income (I)}= ₹(500-x)(300-x)\\\qquad=₹(150000+200x-x^2)\\\qquad \text{I}=150000+200x-x^2\\\qquad\text{Differentiating\space w.r.t.x, \text{we get}}\\\qquad\frac{dl}{dx}=\frac{d}{dx}(150000)+\frac{d}{dx}(200x)-\frac{d}{dx}(x^2)\\\qquad\qquad\Rarr\frac{dl}{dx}=\text{0+200-2x}\\\qquad\text{For income to be maximum,}\space \frac{dl}{dx}=0\\\qquad\Rarr\text{200 – 2x=0}\\\qquad\Rarr x=100\\\qquad \Rarr\space 200-2x=0\\\qquad \Rarr x=100\\\qquad\Rarr\frac{d^2t}{dx^2}=\frac{d}{dx}(200-2x)\\\qquad\qquad\Rarr\frac{d^2t}{dx^2}=0-2=-2\\\qquad\Rarr\frac{d^2t}{dx^2}=\text{\textless}\space 0\\\qquad\text{Hence, annual income is maximum at increment of ₹ 100.}\\\qquad\text{New annual income = }₹ 400 × 400 = ₹160000\\\qquad\text{Old annual income = ₹500 × 300 = ₹150000}\\\qquad\text{Increase in annual income = ₹10000.}\space\space\textbf{Ans.}\\\qquad$$

Answer 21.

Marks in
Physics x
Marks in
Chemistry y
dx = x – 40 dx dy = y – 36 dy (dx)2 (dy)2 dxdy
46 40 6 4 36 16 24
42 38 2 2 4 4 4
44 36 4 0 16 0 0
40 35 0 -1 0 1 0
43 39 3 3 9 9 9
41 37 1 1 1 1 1
45 41 5 5 25 25 25
Σdx = 21 Σdy = 14 Σ(dx)2 = 91 Σ(dy)2 = 56 Σdxdy = 63

$$\text{Here}, n = 7 b_{xy} =\frac{n\sum dx.dy-\sum dx \sum dy}{n\sum (dy)^2-(\sum dy)^2}\\\qquad\qquad\qquad b_{xy}=\frac{7×63-21×14}{7×56-(14)^2}\\\qquad b_{xy}=\frac{441-294}{392-196}\\\qquad b_{xy}=\frac{147}{196}=0.75\\\qquad b_{yx}=\frac{n\sum dx.dy-\sum dx\sum dy}{n\sum(dx)^2-(\sum dx)^2}\\\qquad b_{yx}=\frac{7×63-21×4}{7×91-(21)^2}\\\qquad=\frac{441-294}{637-441}=\frac{147}{196}=0.75\\\qquad\bar{x}=A+\frac{\sum dx}{n},\space\bar{y}=A+\frac{\sum dy}{n}\\\qquad \bar x=40+\frac{21}{7}=43,\bar y=36+\frac{14}{7}=38\\\qquad\text{Equation of X on Y}\\\qquad x − \bar x = b_{xy} (y − \bar y)\\\qquad x-43=0.75(y-38)\\\qquad x = 0·75y – 28·5 + 43\\\qquad x = 0·75y + 14·5\\\qquad\text{Equation of Y on X}\\\qquad y-\bar{y}=b_{yx}(y-\bar{y})\\\qquad x – 43 = 0·75(y – 38)\\\qquad x = 0·75y – 28·5 + 43\\\qquad x = 0·75y + 14·5\\\qquad\text{Equation of Y on X}\\\qquad y − \bar y = b_{yx} (x − \bar x)\\\qquad y – 38 = 0·75(x – 43)\\\qquad y = 0·75x – 32·25 + 38\\\qquad y = 0·75x + 5·75 \\\qquad \text{Hence}, \text{the regression coefficients are} 0·75 \space\text{and}\space 0·75 \text{and the regression equations are x} = 0·75y + 14·5 and y = 0·75x + 5·75.\space \textbf{Ans}.$$

Answer 22.

$$\text{(i) Let the number of type A cake made be x and the number of type B cake made be y.}\\\qquad\text{To maximise the number of cakes.}\\\qquad\because\space Z = x + y \\\qquad\text{Subject to constraint :}\\\qquad\text{200x + 100y} \le 5000\\\qquad\Rarr 2x+y\le50\space\space\space…(i)\\\qquad\text{Also}\space 25x + 50y \le 1000\\\qquad\Rarr x + 2y \le 40 …(ii)\\\qquad \text{and} x \ge 0, y \ge 0\\\qquad\text{Consider,} 2x + y = 50 x + 2y = 40$$

x 0 25 10
y 50 0 30
x 0 40 10
y 20 0 15

The feasible region is the shaded region.

Corner Points Z = x + y
A (25, 0), Z = 25 + 0 = 25
B (20, 10), Z = 20 + 10 = 30
C (0, 20), Z = 0 + 20 = 20

Hence, maximum number of cakes = 20 + 10 = 30.

OR

$$\text{(ii) We have,}\\\qquad \text{Maximise Z = 34x + 45y}\\\qquad \text{Subject to the constraints:}\\\qquad x + y \le 300\\\qquad 2x + 3y \le 70\\\qquad x \ge 0, y \ge 0 \\\qquad\text{We have,\space Maximise}Z = 34x + 45y\\\qquad\text{Subject to the constraints :}\\\qquad x + y \le 300 \\\qquad 2x + 3y \le 70 \\\qquad x \ge 0, y \ge 0\\\qquad\text{Converting the given inequalities into equations, we obtain the following equations:}\\\qquad x + y = 300\\\qquad 2x + 3y = 70\\\qquad\text{Then,} x + y = 300 \space\text{and}\space 2x + 3y = 70$$

x 0 300
y 300 0
x 0 35
y 70/3 0
plottinganswer22

Plotting these points on the graph, we get the shaded feasible region i.e., OCDO.

Corner point Value of Z = 34x + 45y
O (0, 0) 34(0) + 45(0) = 0
C (35, 0) 34(35) + 45(0) = 1190
D (0, 70/3) 34(0) + 45 (70/3) = 1050

Clearly, the maximum value of Z is 1190 at (35, 0).

ISC 36 Sample Question Papers

All Subjects Combined for Class 12 Exam 2023 

ISC 36 Sample Question Papers

All Subjects Combined for Class 12 Exam 2023

The dot mark field are mandatory, So please fill them in carefully
To download the complete Syllabus (PDF File), Please fill & submit the form below.